A Case for Ten Planets

Clyde Tombaugh (1906-1997) spent the first fifteen years of his life on a farm near Streator, Illinois, and then his family moved to a farm near Burdett, Kansas (no wonder he got interested in astronomy!), and he went to high school there. Then, on February 18, 1930, Tombaugh, a self-taught amateur astronomer and telescope maker, discovered the ninth planet in our solar system, Pluto. It had been nearly 84 years since the eighth planet, Neptune, had been discovered, in 1846. And it would be another 62 years before another trans-Neptunian object (TNO) would be discovered.

Clyde Tombaugh made his discovery using a 13-inch f/5.3 photographic refractor at the Lowell Observatory in Flagstaff, Arizona.

Clyde Tombaugh was 24 years old when he discovered Pluto. He died in 1997 at the age of 90 (almost 91). I was very fortunate to meet Prof. Tombaugh at a lecture he gave at Iowa State University in 1990. At that lecture, he told a fascinating story about the discovery of Pluto, and I remember well his comment that he felt certain that no “tenth planet” larger than Pluto exists in our solar system, because of the thorough searches he and others had done since his discovery of Pluto. But, those searches were done before the CCD revolution, and just two years later, the first TNO outside the Pluto-Charon system, 15760 Albion (1992 QB1), would be discovered by David Jewitt (1958-) and Jane Luu (1963-), although only 1/9th the size of Pluto.

Pluto is, by far, the smallest of the nine planets. At only 2,377 km across, Pluto is only 2/3 the size of our Moon! Pluto has a large moon called Charon (pronounced SHAR-on) that is 1,212 km across (over half the size of Pluto), discovered in 1978 by James Christy (1938-). Two additional moons were discovered using the Hubble Space Telescope (HST) in 2005: Hydra (50.9 × 36.1 × 30.9 km) and Nix (49.8 × 33.2 × 31.1 km). A fourth moon was discovered using HST in 2011: Kerberos (10 × 9 × 9 km). And a fifth moon, again using HST, in 2012: Styx (16 × 9 × 8 km).

Pluto has been visited by a single spacecraft. New Horizons passed 12,472 km from Pluto and 28,858 km from Charon on July 14, 2015. Then, about 3½ years later, New Horizons passed 3,538 km from 486958 Arrokoth, on January 1, 2019.

Only one other TNO comparable in size to Pluto (or larger) is known to exist. 136199 Eris and its moon Dysnomia were discovered in 2005 by Mike Brown (1965-), Chad Trujillo (1973-), and David Rabinowitz (1960-). It is currently estimated that Eris is 97.9% the size of Pluto. Not surprisingly, in 2006 Pluto was “demoted” by the IAU from planethood to dwarf planet status. (Is not a “dwarf planet” a planet? Confusing…)

My take on this is that Pluto should be considered a planet along with Eris, of course. The definition of “planet” is really rather arbitrary, so given that Pluto was discovered 75 years before Eris, and 62 years before TNO #2, I think we should (in deference to the memory of Mr. Tombaugh, mostly) define a planet as any non-satellite object orbiting the Sun that is around the size of Pluto or larger. So, by my definition, there are currently ten known planets in our solar system. Is that really too many to keep track of?

There is precedent for including history in scientific naming decisions. William Herschel (1738-1822) is thought to have coined the term “planetary nebula” in the 1780s, and though we now know they have nothing to do with planets (unless their morphology is affected by orbiting planets), we still use the term “planetary nebula” to describe them today.

In the table below, you will find the eight “classical” planets, plus the five largest TNOs, all listed in order of descending size. (The largest asteroid, Ceres, is 939 km across, and is thus smaller than the smallest of these TNOs.)

You’ll see that the next largest TNO after Eris is Haumea, and that its diameter is only 67% that of Eris.

I’ve also listed the largest satellite for each of these objects. Venus and Mercury do not have a satellite—at least not at the present time.

It is amazing to note that both Ganymede and Titan are larger than the planet Mercury! And Ganymede, Titan, the Moon, and Triton are all larger than Pluto.

Largest Objects in the Solar System

Object Diameter (km) Largest Satellite Diameter (km) Size Ratio
Jupiter 139,822 Ganymede 5,268 3.8%
Saturn 116,464 Titan 5,149 4.4%
Uranus 50,724 Titania 1,577 3.1%
Neptune 49,244 Triton 2,707 5.5%
Earth 12,742 Moon 3,475 27.3%
Venus 12,104 N/A N/A N/A
Mars 6,779 Phobos 23 0.3%
Mercury 4,879 N/A N/A N/A
Pluto 2,377 Charon 1,212 51.0%
Eris 2,326 Dysnomia 700 30.1%
Haumea 1,560 Hiʻiaka 320 20.5%
Makemake 1,430 S/2015 (136472) 175 12.2%
Gonggong 1,230 Xiangliu 200 16.3%

Should any other non-satellite objects with a diameter of at least 2,000 km be discovered in our solar system, I think we should call them planets, too.

Election Day Eclipse

The second of two total lunar eclipses this year visible from Tucson will occur early next Tuesday morning, November 8. Yes, this is Election Day in the U.S. Having a total lunar eclipse on Election Day is so rare that it has never happened before since the United States was founded in 1776. Whether or not our nation survives its current paroxysms, we can rest assured that lunar eclipses will continue to occur as they have for billions of years.

Here are the local circumstances for Tucson, Arizona.

Time (MST)EventAltitude
1:02 a.m.Penumbral Eclipse Begins69˚
~1:45 a.m.Penumbra First Visible?62˚
2:09 a.m.Partial Eclipse Begins57°
3:16 a.m.Total Eclipse Begins44°
3:59 a.m.Greatest Eclipse35°
4:42 a.m.Total Eclipse Ends26°
5:23 a.m.Astronomical Twilight Begins18°
5:49 a.m.Partial Eclipse Ends13°
5:52 a.m.Nautical Twilight Begins12°

There are few astronomical events as impressive as a total lunar eclipse, and we’ll have a front-row seat Election Day morning.

Every month, the full moon passes close to the Earth’s shadow, but because of the Moon’s tilted orbit it usually passes above or below the shadow cone of the Earth. This month is different!

Tuesday morning, the Moon orbits right through the Earth’s shadow. At 1:02 a.m., the Moon dips his proverbial toe into the Earth’s shadow, when the Moon is 69˚ above Tucson’s SW horizon. This is the undetectable beginning of the eclipse, when the leading edge of the eastward orbiting-Moon “sees” a partial solar eclipse. When no part of the Moon sees anything more than the Earth blocking some but not all of the Sun, we call that a penumbral eclipse. The very subtle penumbral shading may just begin to be detectable around 1:45 a.m.

When the partial eclipse begins at 2:09 a.m., the upper left edge becomes the first part of the Moon to “see” a total solar eclipse. In other words, from part of the Moon now, the Earth totally eclipses the Sun.

Totality begins at 3:16 a.m. when all of the Moon sees the Earth completely blocking the Sun. Mid-totality occurs at 3:59 a.m., when the center of the Moon is closest to the center of the Earth’s shadow. At that moment, the Moon’s coppery color should be darkest.

That color is caused by sunlight refracting (bending) through the Earth’s atmosphere and shining on the Moon even though from the Moon the Earth is completely blocking the disk of the Sun. The reddish or orangish color imparted to the Moon during totality is the combined light of all the world’s sunrises and sunsets. What a beautiful thought! Had the Earth no atmosphere, the Moon would utterly disappear from view during totality—the time it is completely within the Earth’s umbral shadow.

Totality ends at 4:42 a.m., and the partial eclipse ends at 5:49 a.m. during morning twilight. When the last vestiges of partial solar eclipse leave the Moon at 6:56 a.m., the (penumbral) eclipse ends at moonset as the Sun is rising in the ESE.

This leisurely event can be enjoyed with the unaided eye, binoculars, a telescope, or all three. Don’t let anyone in the family miss seeing it!

The next total eclipse will not grace our skies until March 13, 2025.

If you haven’t already done so, please be sure to vote! It is your responsibility that comes with the privileges of your living in these United States. And voting should only be the beginning of your civic involvement. The quality of our government and elected representatives is directly proportional to the sum total of our collective civic involvement. And that has been pretty poor in recent years. Unlike an eclipse, democracy is not a spectator sport!

Total Lunar Eclipse 2022 #1

The first of two total lunar eclipses this year visible from Tucson will occur conveniently this Sunday evening, May 15 (16 May 2022 UT).

Here are the local circumstances for Tucson, Arizona.

Time (MST)EventAltitude
7:06 p.m.Moonrise
7:28 p.m.Partial Eclipse Begins
8:29 p.m.Total Eclipse Begins14°
9:12 p.m.Greatest Eclipse21°
9:54 p.m.Total Eclipse Ends26°
10:56 p.m.Partial Eclipse Ends33°
11:30 p.m.Penumbra last visible?35°
11:51 p.m.Penumbral Eclipse Ends36°

There are few astronomical events as impressive as a total lunar eclipse, and we’ll have a front-row seat Sunday evening.

Every month, the full moon passes close to the Earth’s shadow, but because of the Moon’s tilted orbit it usually passes above or below the shadow cone of the Earth. This month is different!

Sunday evening, the Moon orbits right through the Earth’s shadow. At 6:32 p.m., the Moon dips his proverbial toe into the Earth’s shadow, when the Moon is still 7˚ below Tucson’s ESE horizon. This is the undetectable beginning of the eclipse, when the leading edge of the eastward orbiting-Moon “sees” a partial solar eclipse. When no part of the Moon sees anything more than the Earth blocking some but not all of the Sun, we call that a penumbral eclipse. The very subtle penumbral shading may just begin to be detectable around 7:00 p.m., but here in Tucson the Moon won’t even rise until six minutes after that.

When the partial eclipse begins at 7:28 p.m., the lower left edge becomes the first part of the Moon to “see” a total solar eclipse. In other words, from part of the Moon now, the Earth totally eclipses the Sun.

Totality begins at 8:29 p.m. when all of the Moon sees the Earth completely blocking the Sun. Mid-totality occurs at 9:12 p.m., when the center of the Moon is closest to the center of the Earth’s shadow. At that moment, the Moon’s color should be darkest.

That color is caused by sunlight refracting (bending) through the Earth’s atmosphere and shining on the Moon even though from the Moon the Earth is completely blocking the disk of the Sun. The reddish or orangish color imparted to the Moon during totality is the combined light of all the world’s sunrises and sunsets. What a beautiful thought! Had the Earth no atmosphere, the Moon would utterly disappear from view during totality—the time it is completely within the Earth’s umbral shadow.

Totality ends at 9:54 p.m., and the partial eclipse ends at 10:56 p.m. As the last vestiges of partial solar eclipse leave the Moon, the (penumbral) eclipse ends at 11:51 p.m.

This leisurely event can be enjoyed with the unaided eye, binoculars, a telescope, or all three. Don’t let anyone in the family miss seeing it!

February is Short, the Moon Makes Haste…

Each night for the next several nights, the Moon sets much later than it did the previous night. This happens for two reasons.

First, this week the plane of the Moon’s orbit is nearly perpendicular to our horizon, so much of the Moon’s orbital motion eastward relative to the background stars (if we could see them) during the day takes it directly away from the western horizon, thus slowing as much as possible its inexorable march towards the west caused by the Earth’s rotation.

Second, this week the Moon is moving north in declination, and this, too, increases the amount of time the Moon stays above the horizon. The closer to the north celestial pole an object is, the longer it stays above our horizon, the further north along the western horizon it sets, and the later it sets. The Moon’s motion during the day northward relative to the celestial equator causes the Moon to set further north than it would have otherwise. The combination of these two factors makes moonset much later each night, as shown in the table below.

But, why doesn’t moonrise also occur much later each morning? As you can see by inspecting the table above, the Moon rises only a little later each day, in marked contrast to the leaps and bounds moonset is later each night. The factors are the same, but the effect is different. Because the Moon is moving north and is thus rising further north every morning, it rises earlier than it would have otherwise. Although the Moon is rising later each day due to its eastward orbital motion, moonrise is only a little later due to the countereffect of an earlier rise time stemming from the Moon’s more northerly declination.

It is no wonder humans have always been fascinated by the Moon’s complex motion. Throughout history, a number of mathematicians have taken up the challenge of trying to understand and predict the Moon’s motion, leading to several important advancements in mathematics.

The Early Radio Universe

As the expanding universe cooled, the first neutral1 hydrogen atoms formed about 380,000 years after the Big Bang (ABB), and most of the hydrogen in the universe remained neutral until the first stars began forming at least 65 million years ABB.

The period of time from 380,000 to 65 million years or so ABB is referred to as the “dark ages” since at the beginning of this period the cosmic background radiation from the Big Bang had redshifted from visible light to infrared so the universe was truly dark (in visible light) until the first stars began to form at the end of this period.

All the while, neutral hydrogen atoms occasionally undergo a “spin-flip” transition where the electron transitions from the higher-energy hyperfine level of the ground state to the lower-energy hyperfine level, and a microwave photon of wavelength 21.1061140542 cm and frequency 1420.4057517667 MHz is emitted.

Throughout the dark ages, the 21 cm emission line was being emitted by the abundant neutral hydrogen throughout the universe, but as the universe continued to expand the amount of cosmological redshift between the time of emission and the present day has been constantly changing. The longer ago the 21 cm emission occurred, the greater the redshift to longer wavelengths. We thus have a great way to map the universe during this entire epoch by looking at the “spectrum” of redshifts of this particular spectral line.

380,000 and 65 million years ABB correspond to a cosmological redshift (z) of 1,081 and 40, respectively. We can calculate what the observed wavelength and frequency of the 21 cm line would be for the beginning and end of the dark ages.

\lambda _{obs} = (z+1)\cdot \lambda_{emit}


The observed wavelength (λobs) for the 21 cm line (λemit) at redshift (z) of 1,081 using the above equation gives us 22,836.8 cm or 228.4 meters.

\nu = \frac{c}{\lambda }


That gives us a frequency (ν) of 1.3 MHz (using the equation above), where the speed of light c = 299,792,458 meters per second.

So a 21 cm line emitted 380,000 years ABB will be observed to have a wavelength of 228.4 m and a frequency of 1.3 MHz.

Using the same equations, we find that a 21 cm line emitted 65 Myr ABB will be observed to have a wavelength of 8.7 m and a frequency of 34.7 MHz.

We thus will be quite interested in taking a detailed look at radio waves in the entire frequency range 1.3 – 34.7 MHz, with corresponding wavelengths from 228.4 m down to 8.7 m.2

The interference from the Earth’s ionosphere and the ever-increasing cacophony of humanity’s radio transmissions makes observing these faint radio signals all but impossible from anywhere on or near the Earth. Radio astronomers and observational cosmologists are planning to locate radio telescopes on the far side of the Moon—both on the surface and in orbit above it—where the entire mass of the Moon will effectively block all terrestrial radio interference. There we will finally hear the radio whispers of matter before the first stars formed.

1 By “neutral” we mean hydrogen atoms where the electron has not been ionized and resides in the ground state—not an excited state.

2 Incidentally, the 2.7 K cosmic microwave background radiation which is the “afterglow” of the Big Bang itself at the beginning of the dark ages (380,000 years ABB), peaks at a frequency between 160 and 280 GHz and a wavelength around 1 – 2 mm. So this is a much higher frequency and shorter wavelength than the redshifted 21 cm emissions we are proposing to observe here.

References

Ananthaswamy, Anil, “The View from the Far Side of the Moon”, Scientific American, April 2021, pp. 60-63

Burns, Jack O., et al., “Global 21-cm Cosmology from the Farside of the Moon”, https://arxiv.org/ftp/arxiv/papers/2103/2103.05085.pdf

Koopmans, Léon, et al., “Peering into the Dark (Ages) with Low-Frequency Space Interferometers”, https://arxiv.org/ftp/arxiv/papers/1908/1908.04296.pdf

Ned Wright’s Javascript Cosmology Calculator, https://astro.ucla.edu/~wright/CosmoCalc.html

Space Records

Russian cosmonaut Valeri Polyakov, M.D. (1942-) holds the record for the longest spaceflight duration. During 1994-1995, he spent 437.8 contiguous days in orbit, almost all of them aboard the Mir space station.

The largest number of people in space at the same time was thirteen, and this has happened four times.

The fastest humans have ever traveled (relative to Earth) occurred on May 26, 1969 when the Apollo 10 crew (Thomas Stafford, John Young, and Eugene Cernan) reached a speed of 24,791 mph—just 0.0037% the speed of light.

Both Jerry Ross and Franklin Chang Díaz hold the record for the most spaceflights. Both astronauts have gone into space seven times. Jerry Ross (STS-61-B, STS-27, STS-37, STS-55, STS-74, STS-88, STS-110) between November 26, 1985 and April 19, 2002 (Space Shuttle Atlantis: 5, Columbia: 1, Endeavour: 1), and Franklin Chang Díaz (STS-61-C, STS-34, STS-46, STS-60, STS-75, STS-91, STS-111) between January 12, 1986 and June 19, 2002 (Space Shuttle Columbia: 2, Atlantis: 2, Discovery: 2, Endeavour: 1). Both astronauts were mission specialists in the NASA Astronaut Group 9, announced May 29, 1980.

The farthest humans have ever been from Earth occurred at 0:21 UT on April 15, 1970 when the crippled Apollo 13 spacecraft (Jim Lovell, Fred Haise, and Jack Swigert) executed a free-return trajectory to Earth. They were furthest from Earth above the lunar farside, 158 miles above the surface and 248,655 miles from Earth.

The youngest person ever to fly in space was Gherman Titov who was 25 years old during his solo Vostok 2 spaceflight on August 6, 1961. He was the second person to orbit the Earth.

The oldest person ever to fly in space was John Glenn who was 77 years old during his second spaceflight aboard the Space Shuttle Discovery STS-95 from October 29, 1998 to November 7, 1998. He was the first American to orbit the Earth in 1962.

The longest spacewalk occurred on March 11, 2001 when James Voss and Susan Helms were outside the Space Shuttle Discovery (STS-102) and the International Space Station for 8 hours and 56 minutes.

The longest moonwalk occurred on December 12-13, 1972 when Apollo 17 astronauts Eugene Cernan and Harrison Schmitt spent 7 hours and 37 minutes outside the lunar module on their second of three lunar excursions. All were longer than 7 hours. This was the final Apollo mission, and Gene Cernan, who died in 2017, is still the last person to walk on the surface of the Moon.

Luna 16: First Robotic Lunar Sample Return Mission

Fifty years ago this day, the Soviet Union’s Luna 16 robotic probe made a night landing in the Sea of Fertility. It drilled nearly 14 inches into the lunar regolith, collected 3.6 ounces of soil, and delivered its precious cargo to Earth four days later.

The astronauts on Apollo 11, 12, 14, 15, 16, and 17 between 1969 and 1972 brought back a total of 840 lbs of moon rocks and soil. Each successive Apollo mission brought back a larger amount of lunar material.

The Soviets brought back a total of 0.7 lbs of lunar soil through their robotic sample return missions Luna 16 (1970), Luna 20 (1972), and Luna 24 (1976).

So, excluding lunar meteorites that have befallen the Earth, a total of 840.7 lbs of lunar material has been brought to research laboratories here on Earth.

After a hiatus of over 44 years, China plans to launch two lunar sample return missions, Chang’e 5 in November 2020 and Chang’e 6 in 2023 or 2024. Chang’e 5 is expected to return at least 4.4 lbs of lunar material from nearly 7 ft. below the surface at its landing site in the Mons Rümker region of Oceanus Procellarum.

Chang’e is the Chinese goddess of the Moon, and is pronounced chong-EE.

Lunar Maria

António Cidadão, of Oeiras, Portugal, many years ago produced a wonderful set of images showing the location of each mare on the Moon. His website has not been updated since 1999 and the contact email address provided there is no longer valid, and even after a thorough Google search I can find no way to contact him to ask permission to link images here to his site. Even worse, because his hosting site is not secure (http: instead of https:), WordPress does not allow me to link directly to his images so I had to put copies into my media library. Please know that the images shown below are all copyrighted by António Cidadão.

Each image shows north is up and west is to the left. This is direction of increasing longitude and therefore west on the Moon, but in our sky, east is to the left. In other words, these annotated images of the Moon are correctly oriented as they would appear to the unaided eye in the sky in the northern hemisphere. In the rest of this article, we will use the moon-centric east-west convention that Cidadão indicates in his image diagrams.

Let’s take a look at each of the lunar maria from moon-west to moon-east. Their fanciful names were mostly given (and codified in 1651) by the Italian astronomer Giovanni Battista Riccioli (1598-1671). Riccioli chose names related to weather, as it was then believed that the Moon, the closest celestial body to the Earth, exerted an influence on the Earth’s weather. This is perhaps not at all surprising given that the phenomenon of tides had been known since antiquity.

Most of the nearside west portion of the Moon is covered by a mare that is so large that it is given a unique designation: Oceanus for “ocean”.

Oceanus Procellarum, the “Ocean of Storms”

Oceanus Procellarum contains the famously bright crater Aristarchus and the associated Aristarchus Plateau. In the image above you will notice what appears to be a tiny mare close to the limb of the Moon west of the southern part of Oceanus Procellarum. This is the lava-flooded crater Grimaldi.

Mare Orientale, the “Eastern Sea”

South of Grimaldi and straddling the lunar limb is Mare Orientale. It is difficult to see because most of it is on the lunar farside, though libration can sometimes bring its oblique visage into view. The name Orientale, meaning “eastern”, describes its location on the eastward-facing limb of the Moon as seen from Earth, rather than its westward direction as seen from the surface of the Moon.

Mare Humorum, the “Sea of Moisture”

Mare Humorum is located just south of Oceanus Procellarum. It is round and inviting, though no spacecraft has ever landed there.

Mare Nubium, the “Sea of Clouds”

Mare Nubium is east of Mare Humorum. The large crater Bullialdus flanks the western edge of Mare Nubium, and Rupes Recta (the “Straight Wall”) flanks its eastern edge.

Mare Cognitum, the “Sea That Has Become Known”

Mare Cognitum lies between Mare Nubium and Oceanus Procellarum. It was named in 1964 after the Ranger 7 probe took the first U.S. close-up pictures of the Moon’s surface prior to crashing there.

Mare Insularum, the “Sea of Islands”

Mare Insularum is north of Mare Cognitum. Its current name was bestowed upon it in 1976 by lunar geologist Don Wilhelms (1930-). The crater Kepler on its western edge separates Mare Insularum from Oceanus Procellarum. The crater Copernicus is on the northeast side of its western lobe.

Mare Vaporum, the “Sea of Vapors”

Mare Vaporum is the mare closest to the center of the Moon’s nearside. The bright crater Manilius lies towards its northeastern edge and the volcanic crater Hyginus and its associated rille (Rima Hyginus) are immediately to its south.

Mare Imbrium, the “Sea of Rains”

Mare Imbrium was created 3.9 billion years ago when an asteroid some 150 miles across crashed into the Moon. This ancient feature is so large that it forms the right eye of the “Man in the Moon” we see when looking at a full or nearly full moon with our unaided eyes.

Mare Frigoris, the “Sea of Cold”

Mare Frigoris lies north and northeast of Mare Imbrium. The dark crater between them is Plato. It is the mare closest to the north pole of the Moon.

Mare Serenitatis, the “Sea of Serenity”

Now we begin our tour of the eastern hemisphere of the Moon’s nearside. Mare Serenitatis has the distinction of being the landing site of the last human mission to the Moon, Apollo 17, in 1972. It was also the landing site of the Soviet unmanned spacecraft Luna 21 just one month later.

Mare Tranquillitatis, the “Sea of Tranquility”

Mare Tranquillitatis is perhaps the most famous of the lunar maria, as it was there that humans first set foot on the surface of the Moon in 1969. The Apollo 11 landing site is located near its southwest corner.

Mare Nectaris, the “Sea of Nectar”

Mare Nectaris lies south of Mare Tranquillitatis. This small, isolated, and nearly circular mare sports a prominent crater, Theophilus, at its northwest corner.

Mare Fecunditatis, the “Sea of Fertility”

East of Mare Nectaris lies Mare Fecunditatis. Superposed upon Mare Fecunditatis is the striking crater pair Messier and Messier A with two prominent rays evocative of a comet’s tail. Named after the famous French comet hunter Charles Messier (1730-1817), these craters and their associated rays were formed from a grazing impact from the east.

Mare Crisium, the “Sea of Crises”

Mare Crisium is a round and isolated mare that makes it easy to remember why it is called the “Sea of Crises”. The Soviet Luna 24 unmanned sample return mission landed there in 1976. The six ounces of lunar materials it brought back to Earth are the last lunar samples scientists have received.

Mare Anguis, the “Serpent Sea”

Mare Anguis lies just northeast of Mare Crisium and is called the “Serpent Sea” for its serpentine shape rather than the more fanciful name “Sea of Serpents” referred to by some science fiction authors.

Mare Undarum, the “Sea of Waves”

Mare Undarum lies southeast of Mare Crisium. Its uneven texture and lack of uniform smoothness appears to justify its name as “the sea of waves”.

Mare Spumans, the “Foaming Sea”

Mare Spumans lies south of Mare Undarum and east of Mare Fecunditatis. The bright crater Petit on the western side of this tiny mare evinces a bit of foam on “the foaming sea”.

Mare Australe, the “Southern Sea”

Mare Australe hugs the southeastern limb of the lunar nearside. Though obliquely viewed from Earth and wrapping around to the lunar farside, favorable libration makes it visible in its entirety on occasion.

Mare Smythii, “Smyth’s Sea”

Mare Smythii on the eastern limb of the Moon is one of two lunar maria named after people. The lucky honoree is English hydrographer and astronomer William Henry Smyth (1788-1865). The lunar equator passes through Mare Smythii.

Mare Marginis, the “Sea of the Edge”

Mare Marginis lies east of Mare Crisium, right along the lunar limb. The crater Goddard on the northeast side of Mare Marginis exhibits bright deposits on its northeastern side. This crater and its associated deposits can only be seen from Earth during favorable librations.

Mare Humboldtianum, the “Sea of Alexander von Humboldt”

Mare Humboldtianum lies along the northeastern limb of the Moon and is the other lunar mare named after a person. The German astronomer Johann Heinrich von Mädler (1794-1874) named this feature after German geographer and explorer Alexander von Humboldt (1769-1859).

This completes our tour of the 21 maria on the nearside of the Moon.

References

António Cidadão’s Home-Page of Lunar and Planetary Observation and CCD Imaging, Moon-“Light” Atlas.  Retrieved 22 April 2020.
http://www.astrosurf.com/cidadao/moonlight_mare_oceanus.htm

Ewen A. Whitaker, Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature (Cambridge University Press, 2003).

Radio Telescope in a Carpet

The lunar farside would be a splendid place to do radio astronomy. First, the cacophony of the Earth would be silenced by up to 2,160 miles of rock. Second, lacking an atmosphere, a radio telescope located on the lunar surface would be able to detect radio waves at frequencies that are absorbed or reflected back into space by the Earth’s ionosphere.

Radio waves below a frequency of 10 MHz (λ ≥ 30 m) cannot pass through the ionosphere to reach the Earth’s surface. The Earth’s atmosphere is variably opaque to radio waves in the frequency range of 10 MHz to 30 MHz (λ = 10 to 30 m), depending upon conditions. The Earth’s atmosphere is mostly transparent to frequencies between 30 MHz (10 m) and 22 GHz (1.4 cm).

Not surprisingly, electromagnetic radiation of a non-terrestrial origin having wavelengths longer than 10 meters has been little studied. If we look, we might discover new types of objects and phenomena.

The best part is the lunar radio telescope wouldn’t have to be a steerable parabolic dish, but instead could be a series of dipole antennas (simple metal rods or wires) imbedded into a plastic carpet that could easily be rolled out onto the lunar surface. This type of radio telescope is “steered” (pointed) electronically through phasing of the dipole elements.

Even though the ever-increasing number of lunar satellites should be communicating at wavelengths far shorter than 10 meters, care must be taken to minimize their impact (both communication and noise emissions) upon all lunar farside radio astronomy.

Notes from AAS 234

I attended the 234th meeting of the American Astronomical Society (AAS), held in St. Louis, Missouri, June 9-13, 2019. Here are some highlights from that meeting.

Day 1 – Monday, June 10, 2019

Research Notes of the AAS is a non-peer-reviewed, indexed and secure record of works in progress, comments and clarifications, null results, or timely reports of observations in astronomy and astrophysics. RNAAS.

The Bulletin of the American Astronomical Society is the publication for science meeting abstracts, obituaries, commentary articles about the discipline, and white papers of broad interest to our community. BAAS.

We still have many unanswered questions about galaxy formation. The rate of star formation in galaxies and central black hole accretion activity was highest between 10 and 11 billion years ago. This corresponds to redshift z around 2 to 3, referred to as “cosmic high noon”. This is the ideal epoch for us to answer our questions about galaxy formation. Near-infrared spectroscopy is important to the study of galaxies during this epoch, and we are quite limited in what we can do from terrestrial observatories. Space based telescopes are needed, and the James Webb Space Telescope (JWST) will be key.

Galaxies are not closed boxes. We need to understand how inflows and outflows affect their evolution (“galactic metabolism”).

There are five international space treaties, with the Outer Space Treaty of 1967 being the first and most important. The United States has signed four of the five treaties. The Moon Agreement of 1979 which states that no entity can own any part of the Moon does not include the United States as one of the signatories.

U.S. Code 51303, adopted in 2015, identifies asteroid resource and space resource rights, and states that “A United States citizen engaged in commercial recovery of an asteroid resource or a space resource under this chapter shall be entitled to any asteroid resource or space resource obtained, including to possess, own, transport, use, and sell the asteroid resource or space resource obtained in accordance with applicable law, including the international obligations of the United States.”

So, unfortunately, U.S. law does allow a commercial entity to own an asteroid, but you have to get there first before you can claim it. The large metallic asteroid 16 Psyche is highly valuable and will probably be owned by some corporation in the not-too-distant future.

Space law often relies upon maritime law as a model.

Astronomer Vayu Gokhale from Truman State University gave an interesting iPoster Plus presentation on how he and his students are operating three automated and continuous zenithal sky brightness measurement stations using narrow-field Sky Quality Meters (SQMs) from Unihedron. Even measurements when it is cloudy are of value, as clouds reflect light pollution back towards the ground. Adding cloud type and height would allow us to make better use of cloudy-night sky brightness measurements. In a light-polluted area, the darkest place is the zenith, and clouds make the sky brighter. In an un-light-polluted area, the darkest place is the horizon, and clouds make the sky darker.

A number of precision radial velocity instruments for exoplanet discovery and characterization will begin operations soon or are already in operation: NEID, HARPS, ESPRESSO, EXPRES, and iLocater, to name a few.

Dark matter: clumps together under gravity, does not emit, reflect, or absorb electromagnetic radiation, and does not interact with normal matter in any way that causes the normal matter to emit, reflect, or absorb electromagnetic radiation. The ratio between dark matter and normal (baryonic matter) in our universe is 5.36 ± 0.05 (Planck 2018).

What is dark matter? It could be a new particle. If so, can we detect its non-gravitational interactions? It could be macroscopic objects, perhaps primordial black holes. Or, it could be a mixture of both. Another possibility is that a modification to the laws of gravitation will be needed to mimic the effects of dark matter.

How “dark” is dark matter? Does it interact at all (besides gravitationally)? Can dark matter annihilate or decay? Even if dark matter started hot, it cools down rapidly as the universe expands.

Primordial black holes could have masses ranging anywhere between 10-16 and 1010 solar masses. LIGO is possibility sensitive to colliding primordial black holes with masses in the range of a few to a few hundred solar masses. Primordial black holes are a fascinating dark matter candidate, with broad phenomenology.

The Cosmic Microwave Background (CMB) is a nearly perfect blackbody with distortions < 1 part in 10,000. What this tells us is that nothing dramatically heated or cooled photons after 2 months after the Big Bang. Anisotropies are variances in the CMB temperature, and the angular power spectrum is variance of CMB temperature as a function of angular scale. CMB anisotropies are very sensitive to the ionization history of the universe. How the universe recombined plays a key role in CMB anisotropies.

Hydrogen: not such a simple atom.

The CMB is polarized. The polarization is caused by Mie scattering of photons.

At the NASA Town Hall, we learned about current and future missions: TESS, SPHEREx, HabEx, LUVOIR, Lynx, Origins Space Telescope (OST).

The highest image rate of standard CCD and CMOS video cameras for asteroid occultation work is 30 frames (60 fields) per second, providing time resolution of 0.017 seconds per field. Adaptive optics and autoguider imaging devices often have a higher sampling rate, and such a camera could perhaps be easily modified to be used for occultation work. A time-inserter would need to be added to the camera (either on-board or GPS-based), and improvements in quantum efficiency (because of the shorter exposures) would benefit from newer imaging technologies such as a Geiger-mode avalanche photodiode (APD); or the Single-photon avalanche detector (SPAD), which are frequently used in chemistry.

Gregory Simonian, graduate student at Ohio State, presented “Double Trouble: Biases Caused by Binaries in Large Stellar Rotation datasets”. The Kepler data yielded 34,030 rotation periods through starspot variability. However, the rapid rotators are mostly binaries. In the Kepler dataset, many rapid rotators have a spin period of the stars equal to the orbital period of the binary. These eclipsing binaries, also known as photometric binaries because they are detected through changes in brightness during eclipses and transits, need to be treated separately in stellar rotation datasets.

Granulation was discovered by William Herschel in 1801 and are vertical flows in the solar photosphere on the order of 1000 m/s, and 1000 km horizontal scale. Supergranulation (Hart 1954, Leighton et al. 1962) are horizontal motions in the photosphere of 300 to 500 m/s with a horizontal scale on the order of 30,000 km.

The amplitude of oscillations in red giants increase dramatically with age.

We’ve never observed the helium flash event in a red giant star, though models predict that it must occur. It is very brief and would be difficult to detect observationally.

Brad Schaefer, Professor Emeritus at Louisiana State University, gave a talk on “Predictions for Upcoming Recurrent Nova Eruptions”. Typically, recurrent novae have about a 30% variation in eruptive timescales, so predicting the next eruption is not trivial. Due to the solar gap (when the object is too close to the Sun to observe on or near the Earth), we are obviously missing some eruptions. However, orbital period changes (O-C curve) can tell us about an eruption we missed. U Sco and T CrB are well-known examples of recurrent novae. Better monitoring of recurrent novae is needed during the pre-eruption plateau. Monitoring in the blue band is important for prediction.

I had the good fortune to talk with Brad on several occasions during the conference, and found him to be enthusiastic, knowledgeable, and engaging. Perhaps you have seen The Remarkable Science of Ancient Astronomy (The Great Courses), and he is just as articulate and energetic in real life. Among other things, we discussed how the internet is filled with misinformation, and even after an idea has been convincingly debunked, the misinformation continues to survive and multiply in cyberspace. This is a huge problem in the field of archaeoastronomy and, indeed, all fields of study. People tend to believe what they want to believe, never mind the facts.

Astrobites is a daily astrophysical-literature blog written by graduate students in astronomy around the world. The goal of Astrobites is to present one interesting paper from astro-ph per day in a brief format accessible to its target audience: undergraduate students in the physical sciences who are interested in active research.

Helioseismology can be done both from space (all) and the ground (some). Active regions on the far side of the Sun can be detected with helioseismology.

All HMI (Helioseismic and Magnetic Imager) data from the Solar Dynamics Observatory is available online.

A good approach to studying solar data is to subtract the average differential rotation at each point/region on the Sun and look at the residuals.

The Wilcox Solar Observatory has been making sun-as-a-star mean magnetic field measurements since 1975.

It is possible to infer electric currents on the Sun, but this is much more difficult than measuring magnetic fields.

Future directions in solar studies: moving from zonal averages to localized regions in our modeling, and the ability through future space missions to continuously monitor the entire surface of the Sun at every moment.

Systematic errors are nearly always larger than statistical uncertainty.

Day 2 – Tuesday, June 11, 2019

It is probably not hyperbole to state that every star in our galaxy has planets. About 1/5 of G-type stars have terrestrial planets within the habitable zone. Life is widespread throughout the universe.

Gas-grain interaction is at the core of interstellar chemistry. Interstellar ices, charged ices, surface chemistry – there is more time for interactions to occur on a dust grain than in a gas. Grain collisions are important, too.

Hot cores are transient regions surrounding massive protostars very early in their evolution. Similar regions are identified around low-mass protostars and are called corinos.

Methanol (CH3OH) is key to making simple organic molecules (SOM). Evaporating ice molecules drive rich chemistry. Dust plays a key role in the chemistry and in transporting material from the interstellar medium (ISM) to planetary systems.

The Rosetta mission detected amino acids on comet 67P/Churyumov–Gerasimenko.

JUICE (JUpiter ICy moons Explorer) is an ESA mission scheduled to launch in 2022, will enter orbit around Jupiter in October 2029 and Ganymede in 2032. It will study Europa, Ganymede, and Callisto in great detail.

The gravitational wave event GW170817 (two infalling and colliding neutron stars) was also detected as a gamma-ray burst (GRB) by the Fermi gamma-ray space telescope, which has a gamma-ray burst detector that at all times monitors the 60% of the sky that is not blocked by the Earth.

The time interval between the GW and GRB can range between tens of milliseconds up to 10 seconds.

The Milky Way galaxy circumnuclear disk is best seen at infrared wavelengths around 50 microns. Linear polarization tells us the direction of rotation. The star cluster near the MW center energizes and illuminates gas structures. Gravity dominates in this region. The role of magnetic fields in this region has been a mystery.

Pitch angle – how tightly wound the spiral arms are in a spiral galaxy.

Are spiral arms transient or long lived? They are probably long lived. There may be different mechanisms of spiral arm formation in grand design spirals compared with other types of spiral galaxies.

In studying spiral galaxies, we often deproject to face-on orientation.

The co-rotation radius is the distance from the center of a spiral galaxy beyond which the stars orbit slower than the spiral arms. Inside this radius, the stars move faster than the spiral arms.

The Sun is located near the corotation circle of the Milky Way.

The origins of supermassive black holes (SMBH) at the centers of galaxies are unclear. Were they seeded from large gas clouds, or were they built up from smaller black holes?

The black holes at the centers of spiral galaxies tend to be more massive when the spiral arm winding is tight, and less massive when the spiral arm winding is loose.

Spiral Graph is in review as a Zooniverse project and has not yet launched. Citizen scientists will trace the spiral arms of 6,000 deprojected spiral galaxies, and 15 traces will be needed for each galaxy. Spiral arm tracings will provide astronomers with intermediate mass black hole candidate galaxies.

Barred spiral galaxies are very common. 66% to 75% of spiral galaxies show evidence of a bar at near-infrared wavelengths.

Magnetic fields in the inner regions of spiral galaxies are scrambling radio emissions to some extent, but radio astronomers have ways to deal with this.

For me, the plenary lecture given by Suvrath Mahadevan, Pennsylvania State University, was the first truly outstanding presentation. His topic was “The Tools of Precision Measurement in Exoplanet Discovery: Peeking Under the Hood of the Instruments”. His discussion of the advance in radial velocity instrumentation was revelatory to me, as his starting point was Roger F. Griffin’s radial velocity spectrometer we used at Iowa State University in the 1970s and 1980s, giving us a precision of about 1 km/s. My, we have come a long way since then!

St. Louis, MO – AAS 2019 – Suvrath Mahadevan during the Plenary Lecture at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Tuesday June 11, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

To discover our Earth from another star system in the ecliptic plane would require detecting an 8.9 cm/s velocity shift in the Sun’s motion over the course of a year.

Precision radial velocity measurement requires we look at the displacement of thousands of spectral lines using high resolution spectroscopy.

The two main techniques are 1) Simultaneous reference and 2) Self reference (iodine cell). Also, externally dispersed interferometry and heterodyne spectroscopy can be used.

Griffin 1967 ~ km/s → CORAVEL 1979 ~300 m/s → CORALIE/ELODIE 1990 ~ 5-10 m/s → HARPS 2000 ~ 1 m/s → ESPRESSO/VLT, EXPRES/DCT, NEID/KPNO, HPF/HET.

We cannot build instruments that are stable over time at 10 cm/s resolution or less.

You can track the relative change in velocity much better than absolute velocity because of the “noise” generated by stellar internal motions.

Measuring the radial velocity at red or infrared wavelengths is best for M dwarfs, and cooler stars.

High radial velocity precision will require long-term observations, and a better understanding of and mitigation for stellar activity. Many things need to be considered: telescope, atmosphere, barycentric correction (chromatic effects can lead to 1/2 m/s error), fibers, modal noise, instrument decoupled from the telescope, calibrators, optics, stability, pipeline, etc. Interdisciplinary expertise is required.

NEID will measure wavelengths of 380 – 930 nm, and have a spectral resolution of R ~ 90,000.

Pushing towards 10 cm/s requires sub-milli-Kelvin instrument stability high-quality vacuum chambers, octagonal fibers, scrambling, and excellent guiding of the stellar image on the fiber to better than 0.05 arcseconds.

Precision radial velocity instruments such as NEID and HPF weigh two tons, so at present they can only be used with ground-based telescopes.

Charge Transfer Efficiency (CTE): need CCDs with CTE > 0.999999. Other CCD issues that don’t flat field out accurately: CCD stitch boundaries, cross hatching in NIR detectors, crystalline defects, sub-pixel quantum efficiency differences. Even the act of reading out the detector introduces a noise source.

10 cm/s is within reach from a purely instrumental perspective, but almost everything has to be just right. But we need to understand stellar activity better: granulation, supergranulation, flares, oscillations, etc. We may not be able to isolate these components of stellar activity, but we will certainly learn a lot in the process.

1s time resolution is required to properly apply barycentric corrections.

NASA’s Universe of Learning : Connecting Learners to the Subject-Matter Experts of NASA Astrophysics: https://www.universe-of-learning.org/

The OpenStax Astronomy Text: https://openstax.org/details/astronomy

Andrew Fraknoi gave an update on the OpenStax Astronomy text.

  • about 70 people have been involved in its development and vetting
  • each chapter includes collaborative group activities
  • math examples are in separate boxes
  • it is estimated that 500+ institutions have adopted this online and free introductory astronomy textbook, and ~200,000 students have used it, including ~30,000 amateur astronomers
  • multiple choice question bank for registered instructors
  • short videos with each chapter
  • available to everyone
St. Louis, MO – AAS 2019 – Attendees during the Eclipse Planning Workshop at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Sunday June 9, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

Open Educational Resources (OER): https://oercommons.org/

International Lunar Observatory Association (ILOA); http://www.spaceagepub.com/

The surface of the Moon has a thinner atmosphere than low-Earth orbit.

Kenneth Gayley, University of Iowa, gave an interesting short talk, “The Real Explanation for Type Ia Supernovae and the Helium Flash”. Here’s the abstract: https://ui.adsabs.harvard.edu/abs/2019AAS…23422404G/abstract . I’m looking forward to reading the entire paper.

Gene Byrd, University of Alabama, gave an interesting short presentation, “Two Astronomy Demos”. The first was “Stars Like Grains of Sugar”, reminiscent of Archimedes’ The Sand Reckoner. And “Phases with the Sun, Moon, and Ball”. He uses a push pin in a golf ball (the golf ball even has craters!). Morning works best for this activity. The Sun lights the golf ball and the Moon and they have the same phase—nice! Touching as well as seeing the golf ball helps students understand the phases of the Moon. Here’s a link to his paper on these two activities.

Daniel Kennefick, University of Arkansas, gave a short presentation on the 1919 eclipse expedition that provided experimental evidence (besides the correct magnitude of the perihelion precession of Mercury) that validated Einstein’s General Relativity. Stephen Hawking in his famous book A Brief History of Time mis-remembered that the 1979 re-analysis of the Eddington’s 1919 eclipse data showed that he may “fudged” the results to prove General Relativity to be correct. He did not! See Daniel Kennefick’s new book on the subject, No Shadow of a Doubt: The 1919 Eclipse That Confirmed Einstein’s Theory of Relativity.

St. Louis, MO – AAS 2019 – Daniel J. Kennefick during the Press Conference: Spiral Galaxies Near and Far at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Tuesday June 11, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

Brad Schaefer, Louisiana State University, gave another engaging talk, presenting evidence that the Australian aborigines may have discovered the variability of the star Betelgeuse, much earlier than the oft-stated discovery by John Herschel in 1836. Betelgeuse varies in brightness between magnitude 0.0 and +1.3 quasi-periodically over a period of about 423 days. It has been shown that laypeople can detect differences in brightness as small as 0.3 magnitude with the unaided eye, and with good comparison stars (like Capella, Rigel, Procyon, Pollux, Adhara, and Bellatrix—not all of which are visible from Australia—for Betelgeuse). It is plausible that the variability of Betelgeuse may have been discovered by many peoples at many different times. The Australian aborigines passed an oral tradition through many generations that described the variability of Betelgeuse. https://ui.adsabs.harvard.edu/abs/2019AAS…23422407S/abstract.

As a longtime astronomical observer myself, I have actually never noticed the variability of Betelgeuse, but Brad has. After his presentation, I mentioned to Brad that it would be interesting to speculate what would lead early peoples to look for variability in stars in the first place, which seems to me to be a prerequisite for anyone discovering the variability of Betelgeuse. His response pointed out that all it would take is one observant individual in any society who would notice/record the variability and then point it out to others.

During the last plenary session of the day, it was announced that the Large Synoptic Survey Telescope (LSST), which is expected to see first light in 2020, is expected to be renamed the Vera Rubin Survey Telescope. Tremendous applause followed! https://aas.org/posts/news/2019/06/lsst-may-be-renamed-vera-rubin-survey-telescope .

If you haven’t looked at the NASA/IPAC Extragalactic Database (NED) lately, you will find new content and functionality. It has been expanded a great deal, and now includes many stellar objects, because we don’t always know what is really a star and what is not. There is now a single input field where you can enter names, coordinates with search radius, etc. NED is “Google for Galaxies”.

I noticed during the 10-minute iPoster Plus sessions that there is a countdown timer displayed unobtrusively in the upper right hand corner that helps the presenter know how much time they have remaining. I think this would be a great device for anyone giving a short presentation in any venue.

St. Louis, MO – AAS 2019 – Attendees during the iPosters/iPosters Plus at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Monday June 10, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

Galactic archaeology is the study of the oldest stars and other structures in our galaxy to better understand how our galaxy evolved.

The AAS has a YouTube channel: https://www.youtube.com/channel/UChXuQtcWbViLxCnzkvc4UZw/featured .

Day 2 ended with an evening presentation of “Cielo”, a documentary film by Alison McAlpine. Highly recommended!

St. Louis, MO – AAS 2019 – Attendees during the Cielo Film Screening at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Tuesday June 11, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

I noted that “Cielo” was presented on the Documentary Channel in Canada. Too bad we do not have a channel like that here in the U.S.!

Day 3 – Wednesday, June 12, 2019
St. Louis, MO – AAS 2019 – Joshua Winn during the Plenary Lecture at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Wednesday June 12, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

Day 3 began with what for me was the finest presentation of the entire conference: Joshua Winn, Princeton University, speaking on “Transiting Exoplanets: Past, Present, and Future”. I first became familiar with Josh Winn through watching his outstanding video course, The Search for Exoplanets: What Astronomers Know, from The Great Courses. I am currently watching his second course, Introduction to Astrophysics, also from The Great Courses. Josh is an excellent teacher, public speaker, and presenter, and it was a great pleasure to meet him at this conference.

Transits provide the richest source of information we have about exoplanets. For example, we can measure the obliquity of the star’s equator relative to the planet’s orbital plane by measuring the apparent Doppler shift of the star’s light throughout transit.

Who was the first to observe a planetary transit? Pierre Gassendi (1592-1655) was the first to observe a transit of Mercury across the Sun in November 1631. Jeremiah Horrocks (1618-1641) was the first to observe a transit of Venus across the Sun in November 1639. Christoph Scheiner (1573-1650) claimed in January 1612 that spots seen moving across the Sun were planets inside Mercury’s orbit transiting the Sun, but we know know of course that sunspots are magnetically cooled regions in the Sun’s photosphere and not orbiting objects at all. Though Scheiner was wrong about the nature of sunspots, his careful observations of them led him to become the first to measure the Sun’s equatorial rotation rate, the first to notice that the Sun rotated more slowly at higher latitudes, and the first to notice that the Sun’s equator is tilted with respect to the ecliptic, and to measure its inclination.

An exoplanet can be seen to transit its host star if the exoplanet’s orbit lies within the transit cone, an angle of 2R*/a centered on our line of sight to the star. R* is the star’s radius, and a is the semi-major axis of the planet’s orbit around the star.

Because of the geometry, we are only able to see transits of 1 out of every 215 Earth-Sun analogs.

Space is by far the best place to study transiting exoplanets.

If an exoplanet crosses a starspot, or a bright spot, on the star, you will see a “blip” in the transit light curve that looks like this:

Transiting exoplanet crossing a starspot (left) or bright spot (right) in the photosphere of the star

Are solar systems like our own rare? Not at all! There are powerful selection effects at work in exoplanet transit statistics. We have discovered a lot of “hot Jupiters” because large, close-in planets are much easier to detect with their short orbital periods and larger transit cones. In actuality, only 1 out of every 200 sun-like stars have hot Jupiters.

Planet statistical properties was the main goal of the Kepler mission. Here are some noteworthy discoveries:

Kepler 89 – two planets transiting at the same time (only known example)

Kepler 36 – chaotic three-body system

Kepler 16 – first known transiting exoplanet in a circumbinary orbit

Transiting Exoplanet Survey Satellite (TESS) – Unlike Kepler, which is in an Earth-trailing heliocentric orbit, TESS is in a highly-elliptical orbit around the Earth with an apogee approximately at the distance of the Moon and a perigee of 108,000 km. TESS orbits the Earth twice during the time the Moon orbits once, a 2:1 orbital resonance with the Moon.

TESS has four 10.5 cm (4-inch) telescopes, each with a 24˚ field of view. Each TESS telescope is constantly monitoring 2300 square degrees of sky.

TESS is fundamentally about short period planets. Data is posted publicly as soon as it is calibrated. TESS has already discovered 700 planet candidates. About 1/2 to 2/3 will be true exoplanets. On average, TESS is observing stars that are about 4 magnitudes brighter than stars observed by Kepler.

The TESS Follow-Up Observing Program (TFOP) is a large working group of astronomical observers brought together to provide follow-up observations to support the TESS Mission’s primary goal of measuring the masses for 50 planets smaller than 4 Earth radii, in addition to organizing and carrying out follow-up of TESS Objects of Interest (TOIs).

HD 21749 – we already had radial velocity data going back several years for this star that hosts an exoplanet that TESS discovered

Gliese 357 – the second closest transiting exoplanet around an M dwarf, after HD 219134

TESS will tell us more about planetary systems around early-type stars.

TESS will discover other transient events, such as supernovae, novae, variable stars, etc. TESS will also make asteroseismology measurements and make photometric measurements of asteroids.

The James Webb Space Telescope (JWST) will be able to do follow-up spectroscopy of planetary atmospheres.

Upcoming exoplanet space missions: CHEOPS, PLATO, and WFIRST.

Hot Jupiter orbits should often be decaying, so this is an important area of study.

Sonification is the process of turning data into sound. For example, you could “listen” to a light curve (with harmonics, e.g. helioseismology and asteroseismology) of a year’s worth a data in just a minute or so.

Solar cycles have different lengths (11-ish years…).

Some predictions: 2019 will be the warmest year on record, 2020 will be less hot. Solar cycle 24 terminate in April 2020. Solar cycle 25 will be weaker than cycle 24. Cycle 25 will start in 2020 and will be the weakest in 300 years, the maximum (such as it is) occurring in 2025. Another informed opinion was that Cycle 25 will be comparable to Cycle 24.

Maunder minimum: 1645 – 1715

Dalton minimum: 1790 – 1820

We are currently in the midst of a modern Gleissberg minimum. It remains to be seen if it will be like the Dalton minimum or a longer “grand minimum” like the Maunder minimum.

Citizen scientists scanning Spitzer Space Telescope images in the Zooniverse Milky Way Project, have discovered over 6,000 “yellow balls”. The round features are not actually yellow, they just appear that way in the infrared Spitzer image color mapping.

Yellow balls (YBs) are sites of 8 solar mass or more star formation, surrounded by ionized hydrogen (H II) gas. YBs thus reveal massive young stars and their birth clouds.

Antlia 2 is a low-surface-brightness (“dark”) dwarf galaxy that crashed into our Milky Way galaxy. Evidence for this collision comes from “galactoseismology” which is the study of ripples in the Milky Way’s disk.

The Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and the Sagittarius Dwarf Galaxy have all affected our Milky Way Galaxy, but galactoseismology has shown that there must be another perturber that has affected the Milky Way. Antlia 2, discovered in November 2018 from data collected by the Gaia spacecraft, appears to be that perturber.

Gaia Data Release 2 (DR2) indicates that the Antlia 2 dwarf galaxy is about 420,000 ly distant, and it is similar in extent to the LMC. It is an ultra-diffuse “giant” dwarf galaxy whose stars average two magnitudes fainter than the LMC. Antlia 2 is located 11˚ from the galactic plane and has a mass around 1010 solar masses.

A question that is outstanding is what is the density of dark matter in Antlia 2? In the future, Antlia 2 may well be an excellent place to probe the nature of dark matter.

Gravity drives the formation of cosmic structure, dark energy slows it down.

Stars are “noise” for observational cosmologists.

“Precision” cosmology needs accuracy also.

The Vera Rubin telescope (Large Synoptic Survey Telescope) in Chile will begin full operations in 2022, collecting 20 TB of data each night!

We have a “galaxy bias” – we need to learn much more about the relation between galaxy populations and matter distribution.

Might there be an irregular asymmetric cycle underlying the regular 22-year sunspot cycle? The dominant period associated with this asymmetry is around 35 to 50 years.

The relationship between differential rotation and constant effective temperature of the Sun: the Sun has strong differential rotation along radial lines, and there is little variation of solar intensity with latitude.

Solar filaments (solar prominences) lie between positive and negative magnetic polarity regions.

Alfvén’s theorem: in a fluid with infinite electric conductivity, the magnetic field is frozen into the fluid and has to move along with it.

Some additional solar terms and concepts to look up and study: field line helicity, filament channels, kinetic energy equation, Lorentz force, magnetic energy equation, magnetic flux, magnetic helicity, magnetohydrodynamics (MHD), meridional flow, polarity inversion lines, relative helicity, sheared arcade, solar dynamo.

Filamentary structures: barbs, Hα, dextral, sinistral.

We would like to be able to predict solar eruptions before they happen.

  1. Magnetic helicity is injected by surface motions.
  2. It accumulates at polarity inversion lines.
  3. It is removed by coronal mass ejections.
Day 4 – Thursday, June 13, 2019

Cahokia (our name for it today) was the largest city north of Mexico 1,000 years ago. It was located at the confluence of the Mississippi, Missouri, and Illinois Rivers. At its height from 1050 – 1200 A.D., Cahokia city covered 6 square miles and had 10,000 to 20,000 people. Cahokia was a walled city. Some lived inside the walls, and others lived outside the walls.

Around 120 mounds were built at greater Cahokia; 70 are currently protected. Platform mounds had buildings on top, and some mounds were used for burial and other uses.

Monks mound is the largest prehistoric earthwork in the Americas. Mound 72 has an appalling history.

Woodhenge – controversial claim that it had an astronomical purpose. Look up Brad Schaefer’s discussion, “Case studies of three of the most famous claimed archaeoastronomical alignments in North America”.

Cahokia’s demise was probably caused by many factors, including depletion of resources and prolonged drought. We do not know who the descendents of the Cahokia people are. It is possible that they died out completely.

The Greeks borrowed many constellations from the Babylonians.

One Sky, Many Astronomies

The neutron skin of a lead nucleus (208Pb) is a useful miniature analog for a neutron star.

Infalling binary neutron stars, such as GW 170817, undergo tidal deformation.

SmallSats

  • Minisatellite: 100-180 kg
  • Microsatellite: 10-100 kg
  • Nanosatellite: 1-10 kg
  • Picosatellite: 0.01-1 kg
  • Femtosatellite: 0.001-0.01 kg

CubeSats are a class of nanosatellites that use a standard size and form factor. The standard CubeSat size uses a “one unit” or “1U” measuring 10 × 10 × 10 cm and is extendable to larger sizes, e.g. 1.5, 2, 3, 6, and even 12U.

The final plenary lecture and the final session of the conference was a truly outstanding presentation by James W. Head III, Brown University, “The Apollo Lunar Exploration Program: Scientific Impact and the Road Ahead”. Head is a geologist who trained the Apollo astronauts for their Moon missions between 1969 and 1972.

St. Louis, MO – AAS 2019 – James Head during the Plenary Lecture at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Thursday June 13, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

During the early years of the space program, the United States was behind the Soviet Union in space technology and accomplishments. The N1 rocket was even going to deliver one or two Soviet cosmonauts to lunar orbit so they could land on the Moon.

Early in his presidency, John F. Kennedy attempted to engage the Soviet Union in space cooperation.

Chris Kraft’s book, Flight: My Life in Mission Control is recommended.

The Apollo astronauts (test pilots) were highly motivated students.

The United States flew 21 robotic precursor missions to the Moon in the eight years before Apollo 11. Rangers 1-9 were the first attempts, but 1 through 6 were failures and we couldn’t even hit the Moon.

Head recommends the recent documentary, Apollo 11, but called First Man Hollywood fiction, saying, “That is not the Neil Armstrong I knew.”

The Apollo 11 lunar samples showed us that the lunar maria (Mare Tranquillitatis) has an age of 3.7 Gyr and has a high titanium abundance.

The Apollo 12 lunar excursion module (LEM) landed about 600 ft. from the Surveyor 3 probe in Oceanus Procellarum, and samples from that mission were used to determine the age of that lunar maria as 3.2 Gyr.

Scientists worked shoulder to shoulder with the engineers during the Apollo program, contributing greatly to its success.

Apollo 11 landed at lunar latitude 0.6˚N, Apollo 12 at 3.0˚S, Apollo 14 at 3.6˚S, and Apollo 15 at 26.1˚N. Higher latitude landings required a plane change and a more complex operation to return the LEM to the Command Module.

The lunar rover was first used on Apollo 15, and allowed the astronauts to travel up to 7 km from the LEM. Head said that Dave Scott did remarkable geological investigations on this mission. He discovered and returned green glass samples, and in 2011 it was determined that there is water inside those beads. Scott also told a little fib to Mission Control to buy him enough time to pick up a rock that turned out to be very important, the “seat belt basalt”.

In speaking about Apollo 16, Head called John Young “one of the smartest astronauts in the Apollo program”.

Harrison Schmitt, Apollo 17, was the only professional geologist to go to the Moon, and he discovered the famous “orange soil”. This is the mission where the astronauts repaired a damaged fender on the lunar rover using duct tape and geological maps to keep them from getting covered in dust while traveling in the rover.

When asked about the newly discovered large mass under the lunar surface, Head replied that it is probably uplifted mantle material rather than an impactor mass underneath the surface.

Radiometric dating of the Apollo lunar samples have errors of about ± 5%.

One of the reasons the Moon’s albedo is low is that space weather has darkened the surface.

The South Pole-Aitken basin is a key landing site for future exploration. In general, both polar regions are of great interest.

Smaller objects like the Moon and Mars cooled efficiently after their formation because of their high surface area to volume ratio.

We do not yet know if early Mars was warm and wet, or cold and icy with warming episodes. The latter is more likely if our solar system had a faint young sun.

Venus has been resurfaced in the past 0.5 Gyr, and there is no evidence of plate tectonics. The first ~80% of the history of Venus is unknown. Venus probably had an ocean and tectonic activity early on, perhaps even plate tectonics. Venus may have undergone a density inversion which exchanged massive amounts of material between the crust and mantle. 80% of the surface of Venus today is covered by lava flows.

A mention was made that a new journal of Planetary Science (in addition to Icarus, presumably) will be coming from the AAS soon.

St. Louis, MO – AAS 2019 – Attendees during the Donors, Sponsors, and 40+E Reception at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Wednesday June 12, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.
St. Louis, MO – AAS 2019 – Attendees during the Donors, Sponsors, and 40+E Reception at the American Astronomical Society’s 234th meeting at the Saint Louis Union Station Hotel in St. Louis, Missouri, Wednesday June 12, 2019. The AAS, established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. More than 500 astronomers, educators, industry representatives, and journalists are spending the week in St. Louis to discuss the latest findings from across the universe. Photo by Phil McCarten, © 2019 AAS/CorporateEventImages.

I attend a lot of meetings and lectures (both for astronomy and SAS), and I find that I am one of the few people in attendance who write down any notes. Granted, a few are typing at their devices, but one never knows if they are multitasking instead. For those that don’t take any notes, I wonder, how do they really remember much of what they heard days or weeks later without having written down a few keywords and phrases and then reviewing them soon after? I did see a writer from Astronomy Magazine at one of the press conferences writing notes in a notebook as I do. I believe it was Jake Parks.

Anyone who knows me very well knows that I love traveling by train. To attend the AAS meeting, I took a Van Galder bus from Madison to Chicago, and then Amtrak from Chicago to St. Louis. Pretty convenient that the AAS meeting was held at the Union Station Hotel, just a few blocks from Amtrak’s Gateway Station. It is a fine hotel with a lot of history, and has an excellent on-site restaurant. I highly recommend this hotel as a place to stay and as a conference venue.

The bus and train ride to and fro afforded me a great opportunity to catch up on some reading. Here are a few things worth sharing.

astrometry.net – you can upload your astronomical image and get back an image with all the objects in the image astrometrically annotated. Wow!

16 Psyche, the most massive metal-rich asteroid, is the destination for a NASA orbiter mission that is scheduled to launch in 2022 and arrive at Psyche in 2026. See my note about 16 Psyche in the AAS notes above.

The lowest hourly meteor rate for the northern hemisphere occurs at the end of March right after the vernal equinox.

A tremendous, dynamic web-based lunar map is the Lunar Reconnaissance Orbiter Camera (LROC) Quickmap, quickmap.lroc.asu.edu.

I read with great interest Dr. Ken Wishaw’s article on pp. 34-38 in the July 2019 issue of Sky & Telescope, “Red Light Field Test”. Orange or amber light is probably better that red light for seeing well in the dark while preserving your night vision. You can read his full report here. Also, see my article “Yellow LED Astronomy Flashlights” here.

Jupiter and Saturn will have a spectacular conjunction next year. As evening twilight fades on Monday, December 21, 2020, the two planets will be just 1/10th of a degree apart, low in the southwestern sky.

An oblate spheroid with axes a = b > c is called a Maclaurin spheroid. If all three axes have different lengths a > b > c, then you have a Jacobi ellipsoid.

The light curve of a stellar occultation by a minor planet (asteroid or TNO) resembles a square well if the object has no atmosphere (or one so thin that it cannot be detected, given the sampling rate and S/N), and the effects of Fresnel diffraction and the star’s angular diameter are negligible.

Astronomer Margaret Burbidge, who turns 100 on August 12, 2019, refused the AAS Annie Jump Cannon Award in 1972, stating in her rejection letter that “it is high time that discrimination in favor of, as well as against, women in professional life be removed, and a prize restricted to women is in this category.” In 1976, Margaret Burbidge became the first woman president of the AAS, and in 1978 she announced that the AAS would no longer hold meetings in the states that had not ratified the Equal Rights Amendment (ERA).

During the days following the conference when I was writing this report, I received the happy news from both the AAS and Sky & Telescope that AAS was the winning bidder of S&T during a bankruptcy auction of its parent company, F+W Media. I believe that this partnership between the AAS and Sky & Telescope will benefit both AAS members and S&T readers immensely. Peter Tyson, Editor in Chief of Sky & Telescope, stated in the mutual press release, “It feels like S&T is finally landing where it belongs.” I couldn’t agree more!