Pictures at an Exhibition

Modest Mussorgsky (1839-1881)

If you listen to much classical music, you are no doubt familiar with Modest Mussorgsky’s Pictures at an Exhibition, orchestrated by Maurice Ravel (1875-1937) in 1922. But have you heard Mussorgsky’s original version for piano, written in 1874? A fabulous recording by Russian-born American pianist Natasha Paremski was released just last year, and I highly recommend it. She also wrote the liner notes, which really adds to your understanding of the piece and her enthusiasm for it. Following Pictures is Variations on a Theme by Tchaikovsky, by contemporary composer, Fred Hersch. I like the piece, which he wrote for Paremski. It is based on one of the beautiful melodies in Tchaikovsky’s Symphony No. 4. I’m sure you will recognize it.

Modest Mussorgsky was a musical rebel and had his demons to contend with, including the alcoholism that ended his life at the young age of 42. Though his character and compositional talents have often been maligned, I think there is more to this man than the caricatures, even of his contemporaries, tell. Stripping away the orchestration provided by Ravel and others, and listening to this work in its raw pianistic form, you will find here a work of true genius, bold and viscerally beautiful.

June Boötids

Some meteor showers give a more-or-less reliable performance the same time each year, but others have an occasional year with (sometimes substantial) activity punctuating many years with little or no activity. The June Boötids, which may or may not be visible this weekend, is one such shower. The expected worldwide peak this year is Saturday, June 27 around 5 p.m. CDT. Though the radiant is above the horizon all night, the best two hours to watch will be from around 1:00 to 3:00 a.m. Sunday morning. (Moonset is at 1:11 a.m. and morning twilight begins at 3:06 a.m. at Dodgeville, CDT.)

One hallmark of the June Boötids is that they are unusually slow meteors, so they’re easy to identify if you see one. Look for the meteors to emanate from a region of the sky a few degrees north of the top of the “kite” of Boötes. Enjoy the process, even if you don’t see any meteors. The weather is pleasant at night this time of year, so get out there and observe!

Geostationary Satellite Declinations

A few years ago, I was doing some telescope sweeping of the meridian sky around declination -6˚ when, to my surprise and delight, a 10th- or 11th-magnitude slow-moving object entered my field of view. As it slowly traversed eastward through the field, I remembered the declination I was pointed to and realized that it must be a geostationary, or at least a geosynchronous, satellite. Centering the moving object and then turning off the telescope’s clock drive confirmed my suspicions. The object was a geosynchronous satellite because it appeared to lay motionless while all the stars in the field drifted toward the west. Serendipity is the spice of life!

Satellites stationed in orbits that are always directly above the Earth’s equator and that have an orbital period of 23h 56m 04.0905s (one sidereal day) have the interesting property of remaining stationary as seen from any point on the surface of the Earth. This property of geostationary satellites, as they are called, is used to great advantage by many communications and weather satellites. There are currently at least 554 satellites in geosynchronous orbits. They are stationed all around the Earth at various longitudes.

At what altitude do geostationary satellites orbit the Earth? It is well above human-occupied spacecraft like the International Space Station which currently orbits 260 miles above the Earth’s surface. Geosynchronous orbit lies some 22,236 miles above the Earth’s equator. This is quite a ways out, as the entire Earth subtends an angle of only 17° 12′ at this distance—about the same as the angular distance between Capella (α Aur) and Elnath (β Tau).

Looking at it another way, geostationary satellites orbit at an altitude that is 2.8 Earth diameters above the equator. Since the Moon orbits at a distance that ranges between 27.4 and 31.4 Earth diameters above the Earth’s surface, geosynchronous orbit is about 1/10 of the way to the Moon.

If you have a telescope, know where to point it, and turn tracking off, you can see a geostationary satellite as a stationary point of light while the stars drift by due to the Earth’s rotation. At our latitude here in southern Wisconsin (43° N), the area where you want to search for geostationary satellites (near the meridian) is around declination -6° 37′. Remember, declination tells you how many degrees above or below the celestial equator an object is, and the numbers range from -90° to +90°, the south celestial pole and north celestial pole, respectively. The celestial equator has a declination of 0°.

For any latitude1, the declination you want to search is given by

\delta _{gs}=\textup{tan}^{-1}\left [ 6.611\textup{ csc }\phi - \textup{cot }\phi \right ]-90^{\circ}

where δgs is the declination of the geostationary satellite in degrees
     and ϕ is your latitude in degrees

Since most calculators don’t have the cosecant (csc) or cotangent (cot) functions, this formula can be rewritten in a slightly more complicated form as

\delta _{gs}=\textup{tan}^{-1}\left [ \frac{6.611}{\textup{sin }\phi }-\frac{1}{\textup{tan }\phi } \right ]-90^{\circ}

Why aren’t the satellites right on the celestial equator (δ = 0°)? They would be if they were millions of miles away or if we were located on the Earth’s equator, but at our northern latitude trigonometric parallax causes us to see the satellites somewhat below the celestial equator, relative to the distant stars.

What if the geostationary satellite is situated east or west of your meridian? How do you calculate its declination then? As you might expect, because the range (observer-to-satellite distance) is greater the further from the meridian the satellite is, the less the parallax is, and therefore the closer the declination is to the equator, though not by a lot. The declination is also symmetric about the meridian, east and west: a geostationary satellite one hour east of the meridian will have the same declination as another geostationary satellite one hour west of the meridian.

If you know the longitude of the geostationary satellite (for example, the GOES-16 weather satellite is stationed above 75.2˚ W longitude), you can calculate its declination (and right ascension) using the following two-step process.

\textup{h}=\textup{tan}^{-1}\left [ \frac{\textup{sin }\Delta\lambda  }{\textup{cos }\Delta \lambda-0.15126\textup{ cos }\phi  } \right ]

where h is the hour angle in degrees
     and Δλ = λsat − λobs , the difference between the satellite and observer
          longitudes, in degrees
     and ϕ is the latitude of the observer in degrees

\delta _{gs}=\textup{tan}^{-1}\left [ \frac{-0.15126\textup{ sin }\phi \textup{ sin h}}{\textup{sin }\Delta \lambda } \right ]

To determine the right ascension of the geostationary satellite, add the value of h to your local sidereal time (the right ascension of objects on your meridian). Make sure you convert h to hours before adding it to your LST.

What if you want to calculate the geostationary declination at a particular hour angle? That is a bit trickier. I could not figure out how to manipulate the equation for h above so that Δλ = f (h,φ). Instead, I rewrote the equation as

\sin \Delta \lambda =\tan h\cdot \left ( \cos \Delta \lambda -0.15126\cos \phi  \right )

and using h as a starting value for Δλ, substituted it into the cos Δλ expression, calculated sin Δλ, took the arcsine to get a new value of Δλ, then substituted that back into the cos Δλ expression, and iterated. Fortunately, the value of Δλ converges very fast. Once you have Δλ, you can use the two-step process we used earlier to determine the declination of the geostationary satellite for a particular hour angle.

Please note that the value of the hour angle h we use here is positive east of the meridian and negative west of the meridian. This is opposite from the normal astronomical sense.

Here is a simple SAS program illustrating how to do all these calculations using a computer.

And here is the output from that program.

1 For latitudes south of the equator, add 180° to get your meridian geostationary declination. The equation goes singular at the equator (φ=0°) and at the poles (φ=90° N and 90° S) since we’re dividing by sin φ = 0 at the equator and tan φ is undefined at the poles. However, as you asymptotically get closer and closer to latitude 0° (0.0001° and -0.0001°, for example) you find that the meridian geostationary declination approaches δ = 0°. Likewise, as you asymptotically approach latitude 90° N and 90° S, you’ll find that the meridian geostationary declination approaches -8°36′ and +8°36′, respectively. Of course, in both cases the geostationary satellites always remain below your horizon. How far north or south in latitude would you have to go, then, to find that geostationary satellites on your meridian are on your horizon due south or due north, respectively? Through a little algebraic manipulation of the first equation above and utilizing some simple trigonometric identities, one finds that at latitudes 81°18′ N and 81°18′ S, geostationary satellites on your meridian would be on the horizon. North or south of there, respectively, you would not be able to see them because the Earth would be in the way.

References

Gérard Maral, Michel Bousquet, Zhili Sun. Satellite Communications Systems: Systems, Techniques and Technology, Fifth Edition. Wiley, 2009. See section 8.3.6.3 Polar mounting.

The Extraordinary Music of Joaquín Rodrigo

Joaquín Rodrigo (1901-1999)

Joaquín Rodrigo was born in Sagunto, Valencia, Spain on November 22, 1901. At the age of three, a diphtheria epidemic ravaged his community and he was not spared. His eyes were damaged and he soon lost his eyesight. Despite his blindness, he went on to become Spain’s greatest composer of the 20th century. After immersing myself in his music for the past several weeks, this avid music listener would like to suggest that Joaquín Rodrigo was one of the greatest composers of the 20th century. I believe his acclaim has not yet reached its peak, and that many of his works that to the present day have seldom been played will soon become part of the standard repertory.

Rodrigo is primarily known for his wonderful guitar concertos: Concierto de Aranjuez (1939), Fantasía para un gentilhombre (1954), Concierto Madrigal (1966), and Concierto Andaluz (1967), but have you heard his purely orchestral work A la busca del más allá (In search of the beyond)? Or his piano version of Zarabanda lejana?

There is no better introduction to the music of Joaquín Rodrigo than the four-CD set from EMI Classics, The Rodrigo Edition. One of the foremost interpreters of Rodrigo, Mexican conductor Enrique Bátiz skillfully conducts the London Symphony Orchestra, the Orquesta Sinfónica del Estado de México, and the Royal Philharmonic Orchestra in these completely satisfying performances.

EMI Classics CZS 7 67435 2
EMI Classics CZS 7 67435 2

Joaquín Rodrigo died in 1999 at the age of 97. When he was 90, a loving and insightful documentary was produced, titled Shadows and Light. Please seek it out! It is well produced and inspiring. You can view this documentary on medici.tv (much of it is in English, but for the parts that aren’t you have the option to select English subtitles), or purchase the DVD through Amazon.

The Lunar Equator

The equator of the Moon is defined by its rotational axis. It is the great circle contained by the plane that is perpendicular to the line connecting the north and south poles of the Moon.

Map of the Moon (nearside) with selenographic coordinate lines (latitude and longitude)

Here is a list of named lunar features through which the Moon’s equator passes, from lunar east to lunar west on the part of the Moon visible from the Earth.

Remember, lunar longitude is opposite the direction in the sky. East longitude is the west/right side of the moon, and west longitude is the east/left side of the moon as viewed from the northern hemisphere of the Earth.

The diameter of each feature is included, followed by the depth of the feature, where available.

Crater Wyld
Wyld
Center: 98.101˚ E, 1.416˚ S
Range: 96.395˚ - 99.806˚ E, 3.121˚ S - 0.289˚N
Crater; libration zone
58 mi
James Hart Wyld (1913-1953), American rocket engineer
Wrinkle ridge Dorsum Cloos
Dorsum Cloos
Center: 90.410˚ E, 1.149˚ N
Range: 90.387˚ - 91.144˚ E, 0.268˚ S - 2.576˚ N
Wrinkle ridge; libration zone
64 mi
Hans Cloos (1885-1951), German geologist
Mare Smythii, “Smyth’s Sea”
Mare Smythii
Center: 87.049˚ E, 1.709˚ S
Range: 80.941˚ - 92.719˚ E, 7.456˚ S - 4.496˚ N
Mare; libration zone; Smyth's Sea
232 mi, 3.1 mi
William Henry Smyth (1788-1865), English naval officer and astronomer
Craters Schubert J, Jenkins, Schubert X, and Nobili
Schubert J
Center: 78.935˚ E, 0.012˚ S
Range: 78.579˚ - 79.292˚ E, 0.344˚ S - 0.320˚ N
Crater
12 mi
Friedrich Theodor von Schubert (1758-1825), German astronomer & geographer 
Jenkins
Center: 78.041˚ E, 0.372˚ N
Range: 77.418˚ - 78.663˚ E, 0.251˚ S - 0.994˚ N
Crater
24 mi, 1.9 mi
Louise Freeland Jenkins (1888-1970), American astronomer
Schubert X
Center: 76.750˚ E, 0.310˚ N
Range: 75.940˚ - 77.561˚ E, 0.501˚ S - 1.121˚ N
Crater
32 mi
Friedrich Theodor von Schubert (1758-1825), German astronomer & geographer
Nobili
Center: 75.949˚ E, 0.166˚ N
Range: 75.260˚ - 76.638˚ E, 0.523˚ S - 0.855˚ N
Crater
26 mi, 2.4 mi
Leopoldo Nobili (1784-1835), Italian physicist
Craters Maclaurin X and Maclaurin O
Maclaurin X
Center: 68.708˚ E, 0.091˚ N
Range: 68.403˚ - 69.014˚ E, 0.214˚ S - 0.397˚ N
Crater
15 mi
Colin Maclaurin (1698-1746), Scottish mathematician
Maclaurin O
Center: 67.557˚ E, 0.135˚ S
Range: 66.873˚ - 68.241˚ E, 0.819˚ S - 0.548˚ N
Crater
23 mi
Colin Maclaurin (1698-1746), Scottish mathematician
Mare Spumans, “The Foaming Sea”
Mare Spumans
Center: 65.303˚ E, 1.302˚ N
Range: 63.613˚ - 66.733˚ E, 1.062˚ S - 3.722˚ N
Mare
87 mi
The Foaming Sea
Crater Webb C
Webb C
Center: 63.833˚ E, 0.149˚ N
Range: 63.267˚ - 64.398˚ E, 0.247˚ S - 0.544˚ N
Crater
21 mi
Thomas William Webb (1807-1885), English astronomer
Sinus Successus, “Bay of Success”
Sinus Successus
Center: 58.520˚ E, 1.124˚ N
Range: 56.519˚ - 60.188˚ E, 0.861˚ S - 2.872˚ N
Bay
82 mi
Bay of Success
Mare Fecunditatis, “Sea of Fertility”
Mare Fecunditatis
Center: 53.669˚ E, 7.835˚ S
Range: 40.771˚ - 63.340˚ E, 21.695˚ S - 6.112˚ N
Mare
429 mi, 1.1 mi
Sea of Fertility
Craterlet Taruntius P is on the left (Taruntius K is at right)
Taruntius P
Center: 51.585˚ E, 0.060˚ N
Range: 51.473˚ - 51.696˚ E, 0.051˚ S - 0.172˚ N
Craterlet
5 mi, 0.9 mi
Lucius Tarutius Firmanus (fl. 86 B.C.), Roman philosopher, mathematician, and astrologer
Wrinkle ridge Dorsum Cayeux, with craterlets Taruntius P (left) and Taruntius K (right) in the lower left
Dorsum Cayeux
Center: 51.220˚ E, 0.763˚ N
Range: 50.922˚ - 52.000˚ E, 0.598˚ S - 2.113˚ N
Wrinkle ridge
59 mi
Lucien Cayeux (1864-1944), French sedimentary petrographer
Wrinkle ridges Dorsa Cato (north is to the right in this Apollo 11 view)
Dorsa Cato
Center: 47.701˚ E, 0.213˚ N
Range: 46.605˚ - 49.599˚ E, 1.165˚ S - 2.233˚ N
Wrinkle ridges
87 mi
Marcus Porcius Cato (234-149 B.C.), Roman soldier, senator, and historian
Rille Rima Messier
Rima Messier
Center: 44.545˚ E, 0.756˚ S
Range: 43.357˚ - 45.581˚ E, 1.561˚ S - 0.015˚ N
Rille
62 mi
Charles Messier (1730-1817), French astronomer
Crater Lubbock R
Lubbock R
Center: 40.453˚ E, 0.167˚ S
Range: 40.060˚ - 40.845˚ E, 0.559˚ S - 0.225˚ N
Crater
15 mi
Sir John William Lubbock (1803-1865), English banker, barrister, mathematician, and astronomer
Maskelyne T & Maskelyne A (click on image for higher resolution view)
Maskelyne T
Center: 36.593˚ E, 0.040˚ S
Range: 36.507˚ - 36.678˚ E, 0.125˚ S - 0.046˚ N
Craterlet
3 mi
Nevil Maskelyne (1732-1811), English astronomer
Maskelyne A
Center: 34.089˚ E, 0.032˚ N
Range: 33.603˚ - 34.574˚ E, 0.453˚ S - 0.517˚ N
Crater
18 mi
Nevil Maskelyne (1732-1811), English astronomer
Mare Tranquillitatis, “Sea of Tranquility”
Mare Tranquillitatis
Center: 30.835˚ E, 8.349˚ N
Range: 16.924˚ - 45.490˚ E, 4.051˚ S - 19.375˚ N
Mare
544 mi
Sea of Tranquility
Rimae Hypatia (two rilles)
Rimae Hypatia
Center: 22.777˚ E, 0.340˚ S
Range: 19.690˚ - 25.975˚ E, 1.406˚ S - 0.672˚ N
Rilles
128 mi
Hypatia (c.370-415), Alexandrian philosopher, mathematician, and astronomer
Craters Lade A and Lade B
Lade A
Center: 12.726˚ E, 0.161˚ S
Range: 11.773˚ - 13.680˚ E, 1.114˚ S - 0.793˚ N
Crater
35 mi
Heinrich Eduard von Lade (1817-1904), German banker and amateur astronomer
Lade B
Center: 9.796˚ E, 0.016˚ N
Range: 9.412˚ - 10.180˚ E, 0.368˚ S - 0.399˚ N
Crater
15 mi
Heinrich Eduard von Lade (1817-1904), German banker and amateur astronomer
Craters Rhaeticus F, Rhaeticus, and Rhaeticus L
Rhaeticus F
Center: 6.438˚ E, 0.060˚ S
Range: 6.134˚ - 6.742˚ E, 0.364˚ S - 0.244˚ N
Crater
11 mi
Georg Joachim Rheticus (1514-1574), Austria-born astronomer & mathematician
Rhaeticus
Center: 4.924˚ E, 0.032˚ N
Range: 4.192˚ - 5.657˚ E, 0.701˚ S - 0.764˚ N
Crater
30 x 27 mi, 1.0 mi
Georg Joachim Rheticus (1514-1574), Austria-born astronomer & mathematician
Rhaeticus L
Center: 3.484˚ E, 0.205˚ N
Range: 3.257˚ - 3.711˚ E, 0.022˚ S - 0.432˚ N
Crater
9 mi
Georg Joachim Rheticus (1514-1574), Austria-born astronomer & mathematician
Sinus Medii, “Bay of the Center”; this feature is closest to the center of the Moon as seen from Earth
Sinus Medii
Center: 1.027˚ E, 1.634˚ N
Range: 3.371˚ W - 5.551˚ E, 2.048˚ S - 4.641˚ N
Bay
178 mi
Bay of the Center
Crater Mösting E
Mösting E
Center: 4.591˚ W, 0.178˚ N
Range: 5.189˚ - 3.992˚ W, 0.421˚ S - 0.777˚ N
Crater
27 mi
Johan Sigismund von Møsting (1759-1843), Danish banker, finance minister, and astronomy enthusiast
Crater Sömmering
Sömmering
Center: 7.526˚ W, 0.193˚ N
Range: 7.987˚ - 7.065˚ W, 0.268˚ S - 0.654˚ N
Crater
17 mi, 0.8 mi
Samuel Thomas von Sömmering (1755–1830),German physician and anatomist
Crater Lansberg
Lansberg
Center: 26.627˚ W, 0.312˚ S
Range: 27.266˚ - 25.988˚ W, 0.951˚ S - 0.327˚ N
Crater
24 mi, 1.9 mi
Philippe van Lansbergen (1561-1632), Dutch astronomer and mathematician
Mare Insularum, “Sea of Islands”
Mare Insularum
Center: 30.640˚ W, 7.792˚ N
Range: 39.195˚ - 22.153˚ W, 0.596˚ S - 16.345˚ N
Mare
318 mi
Sea of Islands
Oceanus Procellarum, “Ocean of Storms”
Oceanus Procellarum
Center: 56.677˚ W, 20.671˚ N
Range: 81.084˚ - 26.850˚ W, 16.266˚ S - 57.433˚ N
Mare
1611 x 353 mi
Ocean of Storms
Crater Lohrmann D cut through by one of the rilles of Rimae Hevelius (arrow points to another part of Rimae Hevelius)
Lohrmann D
Center: 65.273˚ W, 0.141˚ S
Range: 65.442˚ - 65.104˚ W, 0.310˚ S - 0.028˚ N
Crater
7 mi
Wilhelm Gotthelf Lohrmann (1796-1840), German selenographer
Rimae Hevelius
Center: 66.377˚ W, 0.809˚ N
Range: 67.849˚ - 63.582˚ W, 1.284˚ S - 2.956˚ N
Rilles
113 mi
Johannes Hevelius (1611-1687), Polish astronomer
Crater Lohrmann
Lohrmann
Center: 67.383˚ W, 0.440˚ S
Range: 67.898˚ - 66.867˚ W, 0.955˚ S - 0.075˚ N
Crater
19 mi, 1.0 mi
Wilhelm Gotthelf Lohrmann (1796-1840), German selenographer
The lunar equator crosses the rilles of Rimae Riccioli just south of craters Riccioli C and Riccioli H.
Rimae Riccioli
Center: 73.071˚ W, 1.515˚ S
Range: 76.809˚ - 68.566˚ W, 4.754˚ S - 1.247˚ N
Rilles
249 mi
Giovanni Battista Riccioli (1598-1671), Italian astronomer
Crater Schlüter P
Schlüter P
Center: 85.208˚ W, 0.054˚ N
Range: 85.550˚ - 84.865˚ W, 0.289˚ S - 0.397˚ N
Crater; libration zone
12 mi
Heinrich Schlüter (1815-1844), German astronomer

Now that we’ve taken a tour of nearside features along the equator, let us turn to the lunar north and south celestial poles. As you know, the Earth’s north celestial pole (NCP) is currently located quite close to Polaris. However, on the Moon, the NCP is located in Draco near the Cat’s Eye Nebula (NGC 6543), about two-thirds of the way between Polaris and the center of the Head of Draco.

The Moon’s NCP is located near the Cat’s Eye Nebula (NGC 6543), a fine planetary nebula in Draco.

The Moon’s south celestial pole (SCP) is located in the constellation Dorado inside of the Large Magellanic Cloud (LMC). If you were stationed at the south pole of the Moon, you would see the Large Magellanic Cloud directly overhead at all times!

The Moon’s SCP is located in the constellation Dorado within the Large Magellanic Cloud.

The Moon has many fascinating places, tempting us to explore. Some of them have quite interesting names. One of my favorites is Lacus Perseverantiae, Lake of Persistence. Its location is 62.0˚ E and 8.0˚ N. See if you can find it here. (Hint: under Layers : Overlays select Nomenclature, and under Settings select Show Graticule.) Have fun exploring!

References

Cocks, Elijah E.; Cocks, Josiah C. (1995). Who’s Who on the Moon: A Biographical Dictionary of Lunar Nomenclature. Tudor Publishers. ISBN978-0-936389-27-1.

1:1 Million-Scale Maps of the Moon, IAU/USGS/NASA. https://planetarynames.wr.usgs.gov/Page/Moon1to1MAtlas.

Virtual Moon Atlas 6.0 Pro. Computer software. https://ap-i.net/avl/en/start.

Another COVID-19 Map

As long as Americans continue to suffer and die from the coronavirus pandemic, we will need to exercise an abundance of caution, regardless of what some might tell us. In the map below, you will find which counties in the United States reported new coronavirus deaths (shown in red) and, if there were no additional deaths, which counties reported new coronavirus positive cases (shown in orange) during the most recent reporting day. I will update this map each day until the pandemic has ended. Be safe!

Click on the map above for a high resolution view

Mahler’s Farewell

Lewis Thomas (1913-1993) wrote in his essay Late Night Thoughts on Listening to Mahler’s Ninth Symphony,

“I cannot listen to the last movement of the Mahler Ninth without the door-smashing intrusion of a huge new thought: death everywhere, the dying of everything, the end of humanity…How do the young stand it? How can they keep their sanity? If I were very young, sixteen or seventeen years old, I think I would begin, perhaps very slowly and imperceptibly, to go crazy…If I were sixteen or seventeen years old…I would know for sure that the whole world was coming unhinged. I can remember with some clarity what it was like to be sixteen…I was in no hurry…The years stretched away forever ahead, forever…It never crossed my mind to wonder about the twenty-first century; it was just there, given, somewhere in the sure distance.”

Thomas was referring to the threat of nuclear war, which is still very much with us. Now, can you imagine as bad as the COVID-19 pandemic has been, what a nuclear war would be like? We need to rid our planet of these weapons, now.

As I was listening to the final movement of Gustav Mahler’s Symphony No. 9, the Adagio, this past Monday, I was also thinking, of course, about the frightening ravages of COVID-19, but also climate change and the precipitous decline in biological diversity caused by humans. All of this is driven by the fact that there are too many people on the planet, and the answer is not to kill (by whatever means) people who are already here, but to bring fewer children into the world so we can lower human population to a sustainable level in the coming generations. We could all have a higher standard of living without trashing the planet.

On Wednesday, the 50th anniversary of Earth Day, PBS aired a new BBC documentary, Climate Change: The Facts. I was riveted by the program, presented by Sir David Attenborough, who will turn 94 next month the day before I turn 64. David Attenborough is an international treasure. Watching him so expertly present, as he always does, the urgency of this climate crisis and remembering his many outstanding documentary series such as Life on Earth and The Living Planet, I became teary eyed knowing that he will not be with us for very much longer. You wish someone like David Attenborough or Carl Sagan could live for hundreds of years. Because, when our life is over, we will cease to exist as a conscious entity, for all eternity. I am now certain of that. Realizing that this is our one and only life gives one a very different perspective on what we are doing to this world—and to each other. Humanists value the sanctity of each human life more than anyone who believes in an afterlife. Humanists fully understand the enormous responsibility each of us living in this current generation has to ensure that our civilization does not descend into a dystopian existence. There will be no salvation, just unimaginable pain, suffering, and destruction of all that is good, if we fail.

I am so inspired by young Greta Thunberg, who features prominently in the documentary. Greta and the many other young activists around the world give me hope for the future. Her words and conviction brought more tears to my eyes. I may be 63, but I’m with you 100%, Greta. Sign me up!


In 1908 and 1909, Gustav Mahler finished his last completed work, the Symphony No. 9. There was much turmoil and tragedy in Mahler’s life prior to the writing of this symphony. His beloved oldest daughter, Maria Anna Mahler, died of scarlet fever and diptheria on 5 July 1907 at the age of 4. Immediately after Maria’s death, Mahler learned that he had a defective heart. And his relationship with his wife Alma had become strained. Gustav Mahler died on 18 May 1911. He never heard his Symphony No. 9 performed. It received its premiere on 26 June 1912 in Vienna with Bruno Walter conducting the Vienna Philharmonic Orchestra.

The final movement of Mahler’s Symphony No. 9, the Adagio, is one of the most moving pieces of music I have ever heard. While listening to it, one thinks of all the beauty that was and is in the world, and how terribly much we have lost.

The most expressive recording of the Adagio I have heard is by the Chicago Symphony Orchestra, conducted by Sir Georg Solti (Decca 473 274-2). If this movement of 24:37 does not lead you to weep, I don’t know what will.

Lunar Maria

António Cidadão, of Oeiras, Portugal, many years ago produced a wonderful set of images showing the location of each mare on the Moon. His website has not been updated since 1999 and the contact email address provided there is no longer valid, and even after a thorough Google search I can find no way to contact him to ask permission to link images here to his site. Even worse, because his hosting site is not secure (http: instead of https:), WordPress does not allow me to link directly to his images so I had to put copies into my media library. Please know that the images shown below are all copyrighted by António Cidadão.

Each image shows north is up and west is to the left. This is direction of increasing longitude and therefore west on the Moon, but in our sky, east is to the left. In other words, these annotated images of the Moon are correctly oriented as they would appear to the unaided eye in the sky in the northern hemisphere. In the rest of this article, we will use the moon-centric east-west convention that Cidadão indicates in his image diagrams.

Let’s take a look at each of the lunar maria from moon-west to moon-east. Their fanciful names were mostly given (and codified in 1651) by the Italian astronomer Giovanni Battista Riccioli (1598-1671). Riccioli chose names related to weather, as it was then believed that the Moon, the closest celestial body to the Earth, exerted an influence on the Earth’s weather. This is perhaps not at all surprising given that the phenomenon of tides had been known since antiquity.

Most of the nearside west portion of the Moon is covered by a mare that is so large that it is given a unique designation: Oceanus for “ocean”.

Oceanus Procellarum, the “Ocean of Storms”

Oceanus Procellarum contains the famously bright crater Aristarchus and the associated Aristarchus Plateau. In the image above you will notice what appears to be a tiny mare close to the limb of the Moon west of the southern part of Oceanus Procellarum. This is the lava-flooded crater Grimaldi.

Mare Orientale, the “Eastern Sea”

South of Grimaldi and straddling the lunar limb is Mare Orientale. It is difficult to see because most of it is on the lunar farside, though libration can sometimes bring its oblique visage into view. The name Orientale, meaning “eastern”, describes its location on the eastward-facing limb of the Moon as seen from Earth, rather than its westward direction as seen from the surface of the Moon.

Mare Humorum, the “Sea of Moisture”

Mare Humorum is located just south of Oceanus Procellarum. It is round and inviting, though no spacecraft has ever landed there.

Mare Nubium, the “Sea of Clouds”

Mare Nubium is east of Mare Humorum. The large crater Bullialdus flanks the western edge of Mare Nubium, and Rupes Recta (the “Straight Wall”) flanks its eastern edge.

Mare Cognitum, the “Sea That Has Become Known”

Mare Cognitum lies between Mare Nubium and Oceanus Procellarum. It was named in 1964 after the Ranger 7 probe took the first U.S. close-up pictures of the Moon’s surface prior to crashing there.

Mare Insularum, the “Sea of Islands”

Mare Insularum is north of Mare Cognitum. Its current name was bestowed upon it in 1976 by lunar geologist Don Wilhelms (1930-). The crater Kepler on its western edge separates Mare Insularum from Oceanus Procellarum. The crater Copernicus is on the northeast side of its western lobe.

Mare Vaporum, the “Sea of Vapors”

Mare Vaporum is the mare closest to the center of the Moon’s nearside. The bright crater Manilius lies towards its northeastern edge and the volcanic crater Hyginus and its associated rille (Rima Hyginus) are immediately to its south.

Mare Imbrium, the “Sea of Rains”

Mare Imbrium was created 3.9 billion years ago when an asteroid some 150 miles across crashed into the Moon. This ancient feature is so large that it forms the right eye of the “Man in the Moon” we see when looking at a full or nearly full moon with our unaided eyes.

Mare Frigoris, the “Sea of Cold”

Mare Frigoris lies north and northeast of Mare Imbrium. The dark crater between them is Plato. It is the mare closest to the north pole of the Moon.

Mare Serenitatis, the “Sea of Serenity”

Now we begin our tour of the eastern hemisphere of the Moon’s nearside. Mare Serenitatis has the distinction of being the landing site of the last human mission to the Moon, Apollo 17, in 1972. It was also the landing site of the Soviet unmanned spacecraft Luna 21 just one month later.

Mare Tranquillitatis, the “Sea of Tranquility”

Mare Tranquillitatis is perhaps the most famous of the lunar maria, as it was there that humans first set foot on the surface of the Moon in 1969. The Apollo 11 landing site is located near its southwest corner.

Mare Nectaris, the “Sea of Nectar”

Mare Nectaris lies south of Mare Tranquillitatis. This small, isolated, and nearly circular mare sports a prominent crater, Theophilus, at its northwest corner.

Mare Fecunditatis, the “Sea of Fertility”

East of Mare Nectaris lies Mare Fecunditatis. Superposed upon Mare Fecunditatis is the striking crater pair Messier and Messier A with two prominent rays evocative of a comet’s tail. Named after the famous French comet hunter Charles Messier (1730-1817), these craters and their associated rays were formed from a grazing impact from the east.

Mare Crisium, the “Sea of Crises”

Mare Crisium is a round and isolated mare that makes it easy to remember why it is called the “Sea of Crises”. The Soviet Luna 24 unmanned sample return mission landed there in 1976. The six ounces of lunar materials it brought back to Earth are the last lunar samples scientists have received.

Mare Anguis, the “Serpent Sea”

Mare Anguis lies just northeast of Mare Crisium and is called the “Serpent Sea” for its serpentine shape rather than the more fanciful name “Sea of Serpents” referred to by some science fiction authors.

Mare Undarum, the “Sea of Waves”

Mare Undarum lies southeast of Mare Crisium. Its uneven texture and lack of uniform smoothness appears to justify its name as “the sea of waves”.

Mare Spumans, the “Foaming Sea”

Mare Spumans lies south of Mare Undarum and east of Mare Fecunditatis. The bright crater Petit on the western side of this tiny mare evinces a bit of foam on “the foaming sea”.

Mare Australe, the “Southern Sea”

Mare Australe hugs the southeastern limb of the lunar nearside. Though obliquely viewed from Earth and wrapping around to the lunar farside, favorable libration makes it visible in its entirety on occasion.

Mare Smythii, “Smyth’s Sea”

Mare Smythii on the eastern limb of the Moon is one of two lunar maria named after people. The lucky honoree is English hydrographer and astronomer William Henry Smyth (1788-1865). The lunar equator passes through Mare Smythii.

Mare Marginis, the “Sea of the Edge”

Mare Marginis lies east of Mare Crisium, right along the lunar limb. The crater Goddard on the northeast side of Mare Marginis exhibits bright deposits on its northeastern side. This crater and its associated deposits can only be seen from Earth during favorable librations.

Mare Humboldtianum, the “Sea of Alexander von Humboldt”

Mare Humboldtianum lies along the northeastern limb of the Moon and is the other lunar mare named after a person. The German astronomer Johann Heinrich von Mädler (1794-1874) named this feature after German geographer and explorer Alexander von Humboldt (1769-1859).

This completes our tour of the 21 maria on the nearside of the Moon.

References

António Cidadão’s Home-Page of Lunar and Planetary Observation and CCD Imaging, Moon-“Light” Atlas.  Retrieved 22 April 2020.
http://www.astrosurf.com/cidadao/moonlight_mare_oceanus.htm

Ewen A. Whitaker, Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature (Cambridge University Press, 2003).

BepiColombo Passes Earth

The BepiColombo spacecraft flew by the Earth last night, the first of nine gravity-assist maneuvers it will make to slow it down so that it can go into orbit around the planet Mercury on 5 December 2025. This was the only Earth gravity assist. There will be a Venus flyby later this year and next year, and six Mercury flybys from 2021-2025.

BepiColombo passed 7,877 miles over the South Atlantic Ocean at 0425 UT on 10 April 2020 at its closest approach to Earth, and I was able to image it from my backyard observatory in Dodgeville, Wisconsin at 0600 UT at a distance (range) of 21,760 miles.

BepiColombo passing through the constellation Crater 10 Apr 2020 0600 UT as seen from Dodgeville, WI

North is up and East to the left in the video frame, so BepiColombo is moving in a northwesterly direction. The two stars in the field are 3UC 145-134561 (12.2m, north) and 3UC 144-138354 (12.7m, south). The predicted equatorial coordinates (epoch of date) at 0600 UT from JPL Horizons were α = 11h 38m 03.90s, δ = -18° 08′ 25.4″. Please note when using JPL Horizons to generate ephemerides for spacecraft and minor planets passing close to the Earth that you should use the ICRF coordinates (astrometric) and not the apparent coordinates. They can be significantly different!

The integration time in the video above is 7.5 frames per second, or 0.13 second per frame. The field size is 17 x 11 arcminutes.

Here’s the video light curve of BepiColombo as it passed through the field. It was fairly constant in brightness with no obvious variability amidst the noisy measurements.

A New Infinite Series, Convergent and Irrational

Infinite series are a log of func. All kidding aside, you may have heard of the sum of reciprocal squares.

\sum\limits_{n=1}^{\infty}\frac{1}{{n}^2}=\frac{1}{{1}^2}+\frac{1}{{2}^2}+\frac{1}{{3}^2}+\frac{1}{{4}^2}+\frac{1}{{5}^2}+\frac{1}{{6}^2}+\frac{1}{{7}^2}+\cdots

The sum of this slowly convergent series is approximately equal to 1.644934. Is there anything special about this number? Italian mathematician Pietro Mengoli (1626-1686) first posed the question in 1644 (published 1650), what is the exact sum of this infinite series? This problem was not solved until 90 years later by Swiss mathematician Leonhard Euler (1707-1783) in 1734 (published 1735). Euler proved that the exact sum is

\sum\limits_{n=1}^{\infty}\frac{1}{{n}^2}=\frac{{\pi}^2}{6}

There’s that number pi, the most famous of the irrational numbers, showing up once again in mathematics, ostensibly having nothing at all to do with circles. What’s an irrational number? It is any real number that cannot be expressed as a ratio of two integers. The decimal digits of an irrational number neither terminate nor end in a repeating sequence (e.g. 1/3 = 0.3333… or 9/11 = 0.81818181…).

Determining the exact value of the sum of reciprocal squares infinite series is known as the Basel Problem, named after the hometown of Euler (who solved it) and the Bernoulli family of mathematicians (who were not able to solve it).

My admired colleague in England, Abdul Ahad, has come up with a variant of the sum of reciprocal squares where every third term starting with n = 4 is subtracted rather than added.

\frac{{\pi}^2}{6} -2\sum\limits_{n=1}^{\infty}\frac{1}{{\left (3n+1  \right )}^2}=\frac{1}{{1}^2}+\frac{1}{{2}^2}+\frac{1}{{3}^2}-\frac{1}{{4}^2}+\frac{1}{{5}^2}+\frac{1}{{6}^2}-\frac{1}{{7}^2}+\cdots

Ahad has shown that this new series is convergent and sums to an irrational number, approximately equal to 1.40146804. The infinite sum portion of the above expression is approximately equal to 0.12173301 and is also an irrational number. Multiplying by 2 gives us an irrational number, and subtracting from π2/6, which is itself irrational, results in our final result being irrational.

Interestingly, almost all real numbers are irrational, strange as they are.

References

Ahad, Abdul. “An interesting series.” M500 Magazine 278, 8-9 (2017). http://m500.org.uk/wp-content/uploads/2018/11/M278WEB.pdf.

Ahad, Abdul. “A New Infinite Series with Proof of Convergence and Irrational Sum.” Res Rev J Statistics Math Sci, Volume 4, Issue 1 (2018). http://www.rroij.com/open-access/a-new-infinite-series-with-proof-of-convergence-and-irrational-sum.pdf.