Another COVID-19 Map

As long as Americans continue to suffer and die from the coronavirus pandemic, we will need to exercise an abundance of caution, regardless of what some might tell us. In the map below, you will find which counties in the United States reported new coronavirus deaths (shown in red) and, if there were no additional deaths, which counties reported new coronavirus positive cases (shown in orange) during the most recent reporting day. I will update this map each day until the pandemic has ended. Be safe!

Click on the map above for a high resolution view

Population

Climate change is a serious problem requiring immediate attention. We need to reduce greenhouse gas emissions into our atmosphere as fast as possible. Half measures will not do. We are rapidly running out of time before the quality of life for all humans on planet Earth declines, especially for the economically disadvantaged.

A precipitous decline in biological diversity due to habitat loss and extinction of species is of greater concern, and yet it gets very little attention in the mainstream media. While climate change will render large areas of the Earth uninhabitable, biodiversity loss will lead to a partial or complete collapse of the ecosystem humans depend upon for food.

Getting even less attention is the cause of both of these problems: overpopulation. If you were born in 1973, the world’s human population is now twice what it was then. If you were born in 1952, there are three times as many people alive now than there were then. We have a climate emergency and a biodiversity emergency because we have a population emergency. The number of humans on this planet needs to decline, and the only humane way to accomplish that is to have fewer children. It is that simple.

And, yet, we often see this or that news article lamenting the fact that the birth rate in this or that country is too low. That’s crazy! A low birth rate should be a cause for celebration given the current state of the world and its environment. Certainly, a low birth rate does lead to some economic challenges, but these pale in comparison to the challenges we will face if population (and consumption) continue to grow.

As a humanist, I believe that we should do all we can to alleviate and eliminate human suffering. It is our highest moral calling. To be sure, some human suffering is inevitable and necessary when an individual makes poor decisions and suffers the consequences before hopefully making a mid-course correction. But the kind of suffering I am talking about is suffering that is imposed upon a person through no fault of their own, be it the cruelty of other human beings, or the cruelty of nature.

In this light we can see that our economic systems, governments, and most religions are utterly failing us. Nothing short of drastic changes will solve these problems. May wisdom, intelligence, ingenuity, and compassion guide us, rather than fear, ignorance, hatred, and dogma.

There is an organization dedicated to stabilizing human population throughout the world by lowering the birth rate: Population Connection. I encourage you to support their work as I do.

YearPopulationGrowth Factor
20207,794,798,7391.0
20197,713,468,1001.0
20187,631,091,0401.0
20177,547,858,9251.0
20167,464,022,0491.0
20157,379,797,1391.1
20147,295,290,7651.1
20137,210,581,9761.1
20127,125,828,0591.1
20117,041,194,3011.1
20106,956,823,6031.1
20096,872,767,0931.1
20086,789,088,6861.1
20076,705,946,6101.2
20066,623,517,8331.2
20056,541,907,0271.2
20046,461,159,3891.2
20036,381,185,1141.2
20026,301,773,1881.2
20016,222,626,6061.3
20006,143,493,8231.3
19996,064,239,0551.3
19985,984,793,9421.3
19975,905,045,7881.3
19965,824,891,9511.3
19955,744,212,9791.4
19945,663,150,4271.4
19935,581,597,5461.4
19925,498,919,8091.4
19915,414,289,4441.4
19905,327,231,0611.5
19895,237,441,5581.5
19885,145,426,0081.5
19875,052,522,1471.5
19864,960,567,9121.6
19854,870,921,7401.6
19844,784,011,6211.6
19834,699,569,3041.7
19824,617,386,5421.7
19814,536,996,7621.7
19804,458,003,5141.7
19794,380,506,1001.8
19784,304,533,5011.8
19774,229,506,0601.8
19764,154,666,8641.9
19754,079,480,6061.9
19744,003,794,1721.9
19733,927,780,2382.0
19723,851,650,2452.0
19713,775,759,6172.1
19703,700,437,0462.1
19693,625,680,6272.1
19683,551,599,1272.2
19673,478,769,9622.2
19663,407,922,6302.3
19653,339,583,5972.3
19643,273,978,3382.4
19633,211,001,0092.4
19623,150,420,7952.5
19613,091,843,5072.5
19603,034,949,7482.6
19592,979,576,1852.6
19582,925,686,7052.7
19572,873,306,0902.7
19562,822,443,2822.8
19552,773,019,9362.8
19542,724,846,7412.9
19532,677,608,9602.9
19522,630,861,5623.0
19512,584,034,2613.0
19502,536,431,0183.1

References
World Population Prospects 2019, United Nations.
Worldometers.info; 17 January, 2020; Dover, Delaware, U.S.A.

An Astronomy Retirement Community

Are any of you nearing retirement (as I am) or already retired who might be interested in moving to an astronomy-oriented retirement community? If you are, I encourage you to join the moderated Groups.io discussion group Dark-Sky Communities at

https://groups.io/g/Dark-Sky-Communities

I am working to establish such a community and would value your input and assistance. That work involves extensive research, networking, writing articles in various publications to reach a wider audience, finding a suitable developer, and seeking benefactors.

Some characteristics of the community I envision include:

  1. Rural location with a dark night sky, but not too far from a city with decent medical facilities, preferably to the northeast or northwest;
  2. Location with an abundance of clear nights and mild winters, probably in Arizona, New Mexico, or West Texas;
  3. Lighting within the community that does not interfere with astronomical activities, strictly enforced;
  4. Community is owned and operated by a benefit corporation or cooperative that will rent a house or apartment to each resident;
  5. Observatories will be available for rental by interested residents who will equip them;
  6. Pro-am collaborative research opportunities will be developed and nurtured;
  7. A community observatory and a public observatory for astronomy outreach will be constructed and maintained;
  8. Lodging will be available for visitors and guests;
  9. There will be opportunities for on-site income operating and maintaining the community or, alternatively, a reduction in monthly rental fees.

Many of us have spent a significant amount of time and energy over the years trying to rein in light pollution in our respective communities and in the wider world, with varying degrees of success. Those efforts should continue, but the grim reality is that light pollution is continuing to get worse almost everywhere.

The opportunity to live in a community of varied interests but with a common appreciation for the night sky and a natural nighttime environment will appeal to many of us. Furthermore, a dark-sky community will afford us opportunities to show the world at large a better way to live.

Traditionally, in the United States at least, if one wants to live under a dark and starry night sky, your only options are to purchase land and build a house on it, or purchase an existing rural home. Not only is buying and maintaining rural real estate unaffordable or impractical for many, many would prefer to live in a rural community, provided that the night sky and nighttime environment are vigorously protected. Rental will also make it easier to move into and out of the community as circumstances change.

Anyone Need a Good SAS Programmer?

My current company, despite my objections and expertise, is phasing out SAS, and I think it is a misguided decision.

I am only about three years away from semi-retirement, but you won’t find a more motivated worker.  Not only am I a top flight SAS programmer with many years of experience, but I’m also very good at teaching and mentoring others in the use of SAS—something I almost never get to do in my current position.

I need a change.

I have “big city” job skills in a small town where there appear to be no other employers who would be able to make use of my SAS expertise.  And, at this stage of my life, I can’t relocate and am unwilling to commute, so working from home appears to be the only option.

I’m looking at potential opportunities as an “encore career” and would really like to do something that directly benefits society.  I loved my 21 years at the Iowa Department of Transportation, and would love to be a public servant once again, or to work for a nonprofit organization. Or work on scientific projects—true science, not data “science”. Or, data for good projects.  Both salary and number of work hours (up to full time) are completely negotiable.  I’m at a point now in my career where I can be more flexible for the right opportunity.

I have my own personal SAS Analytics Pro license, so could do work for you even if you don’t have SAS.

SAS is a great product, and SAS Institute is a great company.  And SAS keeps getting better all the time.

Some say that SAS is difficult to learn, but, like many things, it is not difficult at all if you have a good teacher who has a thorough understanding of the subject matter and a passion for teaching it. That would be me.

Dodgeville Streetlights

Has anyone else noticed how Alliant Energy is gradually replacing our orangish-white-light streetlights with bluish-white-light ones? The orangish-white-light streetlights are high-pressure sodium (HPS) with a correlated color temperature (CCT) of 1900K, whereas the bluish-white-light streetlights that are replacing them are LED with a CCT of 4000K, and, most notably, they are two and a half times as bright.

Even though I have written to both Alliant Energy and the City of Dodgeville, nothing has changed.

My questions, which are still unanswered:

What is the justification for increasing the streetlighting illumination level by two and a half times over what it has been for decades?

Why are we going from 1900K to 4000K (cold white), when 2700K or 3000K (warm white) is readily available and being used in many communities in the U.S. and Canada?

This same transformation is happening in Mineral Point, and probably many other communities in SW Wisconsin as well.

Is anyone else noticing how this is profoundly changing the rural character of our nighttime environment? Is anyone else concerned about this? The increase in glare and light trespass onto neighboring properties from these new LED lights is quite noticeable to me, even though they are nominally full-cutoff. Why? They are too bright, and too blue.

If anyone locally is reading Cosmic Reflections (and sometimes I wonder if anyone is…), and if you have noticed and are alarmed by these streetlighting changes, please contact me on blog or off blog (oesper at mac.com) and let’s meet and discuss a plan of action. Something needs to be done before it is too late and we are stuck with this very negative change to our nighttime environment.

A Shroud of Satellites

The first five Iridium satellites were launched on May 5, 1997, and by 2002 there were 66 operational satellites, providing consistent global satellite phone coverage. These satellites have the interesting property that their antenna panels sometimes reflect sunlight down to the Earth’s surface, causing what came to be known as “Iridium flares”, delighting terrestrial observers—myself included. During an Iridium flare event, the satellite suddenly appears and gradually brightens and then dims to invisibility as it moves slowly across a section of sky over several seconds. Many of these events reach negative magnitude, with some getting as bright as magnitude -9.5.

The next generation of Iridium satellites began launching in 2017, but these satellites are constructed in such a way that they do not produce flares. Gradually, the original Iridium satellites are de-orbiting (or being de-orbited), so eventually there will be no more Iridium flares.

The Iridium flares haven’t been much of a nuisance to astronomers because the number of events per night for a given observer have been in the single digits.

But now we’re facing too much of a good thing. The first volley of 60 Starlink satellites was launched on May 24, with 12,000 expected to be in orbit by 2028. These satellites will provide broadband internet service to the entire planet. Though the Starlink satellites aren’t expected to produce spectacular flares like the first generation of the Iridium satellites, they do reflect sunlight as any satellite does, and the sheer number of them in relatively low Earth orbit is sure to cause a lot of headaches for astronomers and stargazers throughout the world.

I estimate that about 468 of the 12,000 satellites will be above your horizon at any given moment, but how many of them will be visible will depend on their altitude (both in terms of distance above the Earth’s surface and degrees above the horizon), and where they are relative to the Earth’s shadow cone (they have to be illuminated by sunlight to be seen).

And Starlink will not be the only swarm of global broadband internet satellites, as other companies and countries plan to fly their own satellite constellations.

This situation illustrates yet another reason why we need a binding set of international laws that apply to all nations and are enforced by a global authority. The sooner we have this the better, as our survival may depend upon it. How else can we effectively confront anthropogenic climate change and the precipitous decline in biodiversity?

As for these swarms of satellites, two requirements are needed now to minimize their impact on astronomy:

  1. Build the satellites with minimally reflective materials and finishes
  2. Fly one internationally-managed robust constellation of global broadband internet satellites, and require competing companies and nations to utilize them, similar to the co-location often required for terrestrial communication towers

I’d like to close this piece with a few questions. Will future “stargazers” go out to watch all the satellites and generally ignore the real stars and constellations because they are too “boring”? Will professional astronomers increasingly have to move their operations off the Earth’s surface to the far side of the Moon and beyond? Will we continue to devalue the natural world and immerse ourselves ever more deeply into our human-invented virtual environments?

Stevens Point

I visited Stevens Point, Wisconsin for the first time over the Memorial Day weekend and, I have to say, this community of 26,000 is impressive. A great place to stay while you’re there is the Baymont Inn & Suites at 247 Division St. N. It is a short and pleasant walk to the University of Wisconsin – Stevens Point campus, the Schmeeckle Reserve (wow!), and the Green Circle Trail. Michele’s Restaurant is only a few blocks down the street. Great food!

I miss living in a college town. It is energizing to interact on a daily basis with well educated, intellectually curious, and cosmopolitan people who are passionate about their work. I lived in Ames, Iowa—where Iowa State University is located—for nearly 30 years, and I feel more at home in Stevens Point, a smaller community, than I do now in Ames. I think Stevens Point is the nicest community I have visited since leaving Ames in 2005. Definitely would be willing to live there someday. UW-Stevens Point even has a physics & astronomy department, an observatory, and a planetarium. Perhaps I could help out in retirement.

Some towns have a lot going for them even without a college or university—around here, Mineral Point and Spring Green come to mind. Some towns are at somewhat of a disadvantage because they have a name that is not particularly attractive. For example, Dodgeville, where I currently live and work, has a moniker that isn’t all that inviting. But there is no place so nice to live as a college town—for people like me, at least.

My primary civic interests are in gradually developing a well planned network of paved, off-road bike paths, walking trails through natural areas, a center for continuing education, a community astronomical observatory, and a comprehensive and well-enforced outdoor lighting ordinance to restore, preserve, and protect our nighttime environment and view of the night sky. Living in a community like Dodgeville, I don’t get the sense that there is enough interest or political will to make any of these things happen. I can’t do it alone.

Right Turn on Red

It is time to put an end to right-turn-on-red. It unnecessarily puts pedestrians and bicyclists trying to cross at crosswalks in harm’s way. I’m old enough to remember driving when a red light meant stop—and stay stopped—always. I’ve never liked right-turn-on-red. During my 21 years working at the Iowa Department of Transportation, I learned that doing whatever we can to minimize the potential for driver confusion or uncertainty will always improve safety.

Massachusetts was the last state to adopt right-turn-on-red, on January 1, 1980. New York City still bans right-turn-on-red, unless a sign indicates otherwise. That should be the norm, not the exception.

Short of an outright ban, a good approach would be to put up signs at major intersections with crosswalks, as shown below, but I would add “or bicyclists” as bicyclists often must use pedestrian crosswalks when it is not safe to ride in the street.

“No Turn on Red When Pedestrians or Bicyclists Present” would be even better

The most dangerous situation occurs when a pedestrian (or bicyclist) is waiting for the crosswalk signal to turn from “Don’t Walk” to “Walk”, and a driver who will be crossing the pedestrian’s crosswalk is stopped at a red light. The driver is eager to make a right turn on red and can’t really see when your crosswalk signal turns to walk, so they may turn right in front of you at the same time you are (legally) starting to cross the intersection. This is even more dangerous for bicyclists because they move faster into the intersection than a pedestrian does. This situation is illustrated in the diagram below.

A pedestrian or bicyclist at the SE corner of this intersection is in danger crossing the street either west or north.

Here in Dodgeville, Wisconsin, a particularly dangerous location for pedestrians and bicyclists is the south-to-north crosswalk at the SW corner of the intersection of Bequette and US 18, where drivers frequently make right turns from US 18 EB to Bequette SB. Right turns should be prohibited here with a sign that says No Turn on Red When Pedestrians or Bicyclists Present.

The red “X” marks a particularly dangerous location in Dodgeville for pedestrians and bicyclists because right-turn-on-red is allowed here.

Year-Round Daylight Saving Time?

I’ve never been a fan of daylight saving time. During the warmest months for stargazing and other astronomy activities, daylight saving time (DST) puts the end of twilight (and every other astronomical event) an hour later: near, at, or past bedtime for children and early-rising adults.

The last time we tinkered with DST in the U.S. was to extend it in 2007 to begin the second Sunday in March and end the first Sunday in November (previously it was the first Sunday in April to the last Sunday in October). We currently observe daylight saving time 65.4% of the year (almost ⅔) and standard time the remaining 34.6% of the year (a little over ⅓).

DST is a zero-sum game. Getting that extra hour the first weekend in November sure is nice, but we pay for it when we lose an hour the second weekend in March. For a few days in November, we feel like we’re sleeping in an extra hour, but for a few days in March, we feel like we’re getting up an hour earlier than usual.

While I would much prefer to stay on standard time all year long nationwide, there doesn’t appear to be much public support for that. On the other hand, there is a groundswell of support for going to year-round DST. Even this would be preferable to our current system, in my opinion.

We have toyed with the idea of year-round DST once before: from January 6, 1974 to October 27, 1974. During the winter months in early 1974, there was a lot of public outcry about schoolchildren going to school in the dark, and I’m sure the pre-sunrise cold was a factor, too. So, the year-round DST experiment was terminated early (it was supposed to last until April 27, 1975). Would it be any different this time around?

Northern states (where the winter nights are longest) would be most affected by year-round DST, as would areas in the far-western reaches of each of the time zones. Here in Wisconsin, we would see something like the following:

Some Highlights of Year-Round Daylight Saving Time in Wisconsin (times are for Dodgeville, WI)
  • Earliest End of Evening Twilight: 7:08 p.m. (around December 6)
  • Earliest Sunset: 5:26 p.m. (around December 9)
  • Latest Sunrise: 8:32 a.m. (around January 3)
  • Latest Onset of Morning Twilight: 6:50 a.m. (around January 6)
DateSunriseSunset
November 17:35 a.m.5:53 p.m.
November 157:53 a.m.5:37 p.m.
December 18:12 a.m.5:27 p.m.
December 158:25 a.m.5:27 p.m.
January 18:32 a.m.5:36 p.m.
January 158:29 a.m.5:51 p.m.
February 18:16 a.m.6:13 p.m.
February 157:59 a.m.6:31 p.m.
March 17:36 a.m.6:51 p.m.
March 157:12 a.m.7:08 p.m.

I have an idea. If we extend DST to year-round, why not also start the school day an hour later? There are studies that show that most students would benefit from a later start of the school day. Of course, that would also mean that many parents would probably want to start their work day an hour later, too. But if we do that, then what’s the point in going to year-round DST in the first place?

Many states are currently considering and some have even passed legislation extending DST to year-round, but federal law will have to change to allow any of these states to do this. Right now, states only have the right to opt out of DST altogether, as Arizona and Hawaii currently do.

Gas Tax and Road Maintenance

State and local roads and city streets have been in a downward spiral of deterioration for the past several years and something needs to be done. You have no doubt noticed this driving, but try riding a bicycle and you will really notice how bad things have gotten.

Here in Dodgeville, Wisconsin, many of the city streets are in such bad shape they are becoming dangerous for bicyclists. And more difficult, too. Ever try riding up one of our many hills on pavement that is badly cracked? No wonder I hardly ever see anyone else biking here.

I think the best way to fund road resurfacing and reconstruction projects is to increase fuel taxes. These taxes should not only fund maintenance of state roads, but local roads and city streets as well.

The current gasoline tax in Wisconsin is 51.3¢ per gallon. This includes the following components:

  • Federal tax: 18.4¢ per gallon
  • State tax: 30.9¢ per gallon
  • Petroleum inspection fee: 2.0¢ per gallon

Let’s increase gas taxes in Wisconsin by a minimum of 8¢ to 10¢ per gallon (more would be better) and use all of that revenue to resurface and reconstruct roads throughout the state. Small communities and rural areas are most in need of assistance.