Meteor Shower Calendar 2019

Here’s our meteor shower calendar for 2019.  It is sourced from the IMO’s Working List of Visual Meteor Showers (https://www.imo.net/files/meteor-shower/cal2019.pdf, Table 5, p. 24).

Each meteor shower is identified using its three-character IAU meteor shower code.  Codes are bold on the date of maximum, and one day either side of maximum.

Here’s a printable PDF file of the meteor shower calendar shown below:

Happy meteor watching!


January 2019

SUN MON TUE WED THU FRI SAT
    1
DLM QUA
2
DLM QUA
3
DLM QUA
4
DLM QUA
5
DLM QUA
6
DLM QUA
7
DLM QUA
8
DLM QUA
9
DLM QUA
10
DLM QUA GUM
11
DLM QUA GUM
12
DLM QUA GUM
13
DLM GUM
14
DLM GUM
15
DLM GUM
16
DLM GUM
17
DLM GUM
18
DLM GUM
19
DLM GUM
20
DLM GUM
21
DLM GUM
22
DLM GUM
23
DLM
24
DLM
25
DLM
26
DLM
27
DLM
28
DLM
29
DLM
30
DLM
31
DLM ACE
   



February 2019

SUN MON TUE WED THU FRI SAT
          1
DLM ACE
2
DLM ACE
3
DLM ACE
4
DLM ACE
5
ACE
6
ACE
7
ACE
8
ACE
9
ACE
10
ACE
11
ACE
12
ACE
13
ACE
14
ACE
15
ACE
16
ACE
17
ACE
18
ACE
19
ACE
20
ACE
21 22 23
24 25
GNO
26
GNO
27
GNO
28
GNO
   



March 2019

SUN MON TUE WED THU FRI SAT
          1
GNO
2
GNO
3
GNO
4
GNO
5
GNO
6
GNO
7
GNO
8
GNO
9
GNO
10
GNO
11
GNO
12
GNO
13
GNO
14
GNO
15
GNO
16
GNO
17
GNO
18
GNO
19
GNO
20
GNO
21
GNO
22
GNO
23
GNO
24
GNO
25
GNO
26
GNO
27
GNO
28
GNO
29 30
31            



April 2019

SUN MON TUE WED THU FRI SAT
  1 2 3 4 5 6
7 8 9 10 11 12 13
14
LYR
15
PPU LYR
16
PPU LYR
17
PPU LYR
18
PPU LYR
19
ETA PPU LYR
20
ETA PPU LYR
21
ETA PPU LYR
22
ETA PPU LYR
23
ETA PPU LYR
24
ETA PPU LYR
25
ETA PPU LYR
26
ETA PPU LYR
27
ETA PPU LYR
28
ETA PPU LYR
29
ETA LYR
30
ETA LYR
       



May 2019

SUN MON TUE WED THU FRI SAT
      1
ETA
2
ETA
3
ELY ETA
4
ELY ETA
5
ELY ETA
6
ELY ETA
7
ELY ETA
8
ELY ETA
9
ELY ETA
10
ELY ETA
11
ELY ETA
12
ELY ETA
13
ELY ETA
14
ARI ELY ETA
15
ARI ETA
16
ARI ETA
17
ARI ETA
18
ARI ETA
19
ARI ETA
20
ARI ETA
21
ARI ETA
22
ARI ETA
23
ARI ETA
24
ARI ETA
25
ARI ETA
26
ARI ETA
27
ARI ETA
28
ARI ETA
29
ARI
30
ARI
31
ARI
 



June 2019

SUN MON TUE WED THU FRI SAT
            1
ARI
2
ARI
3
ARI
4
ARI
5
ARI
6
ARI
7
ARI
8
ARI
9
ARI
10
ARI
11
ARI
12
ARI
13
ARI
14
ARI
15
ARI
16
ARI
17
ARI
18
ARI
19
ARI
20
ARI
21
ARI
22
JBO ARI
23
JBO ARI
24
JBO ARI
25
JBO
26
JBO
27
JBO
28
JBO
29
JBO
30
JBO
           



July 2019

SUN MON TUE WED THU FRI SAT
  1
JBO
2
JBO
3
CAP
4
CAP
5
CAP
6
CAP
7
CAP
8
CAP
9
CAP
10
CAP
11
CAP
12
CAP SDA
13
CAP SDA
14
CAP SDA
15
CAP SDA PAU
16
CAP SDA PAU
17
PER CAP SDA PAU
18
PER CAP SDA PAU
19
PER CAP SDA PAU
20
PER CAP SDA PAU
21
PER CAP SDA PAU
22
PER CAP SDA PAU
23
PER CAP SDA PAU
24
PER CAP SDA PAU
25
PER CAP SDA PAU
26
PER CAP SDA PAU
27
PER CAP SDA PAU
28
PER CAP SDA PAU
29
PER CAP SDA PAU
30
PER CAP SDA PAU
31
PER CAP SDA PAU
     



August 2019

SUN MON TUE WED THU FRI SAT
        1
PER CAP SDA PAU
2
PER CAP SDA PAU
3
KCG PER CAP SDA PAU
4
KCG PER CAP SDA PAU
5
KCG PER CAP SDA PAU
6
KCG PER CAP SDA PAU
7
KCG PER CAP SDA PAU
8
KCG PER CAP SDA PAU
9
KCG PER CAP SDA PAU
10
KCG PER CAP SDA PAU
11
KCG PER CAP SDA
12
KCG PER CAP SDA
13
KCG PER CAP SDA
14
KCG PER CAP SDA
15
KCG PER CAP SDA
16
KCG PER SDA
17
KCG PER SDA
18
KCG PER SDA
19
KCG PER SDA
20
KCG PER SDA
21
KCG PER SDA
22
KCG PER SDA
23
KCG PER SDA
24
KCG PER
25
KCG
26 27 28
AUR
29
AUR
30
AUR
31
AUR



September 2019

SUN MON TUE WED THU FRI SAT
1
AUR
2
AUR
3
AUR
4
AUR
5
SPE AUR
6
SPE
7
SPE
8
SPE
9
DSX SPE
10
STA DSX SPE
11
STA DSX SPE
12
STA DSX SPE
13
STA DSX SPE
14
STA DSX SPE
15
STA DSX SPE
16
STA DSX SPE
17
STA DSX SPE
18
STA DSX SPE
19
STA DSX SPE
20
STA DSX SPE
21
STA DSX SPE
22
STA DSX
23
STA DSX
24
STA DSX
25
STA DSX
26
STA DSX
27
STA DSX
28
STA DSX
29
STA DSX
30
STA DSX
         



October 2019

SUN MON TUE WED THU FRI SAT
    1
STA DSX
2
ORI STA DSX
3
ORI STA DSX
4
ORI STA DSX
5
ORI STA OCT DSX
6
ORI STA DRA OCT DSX
7
ORI STA DRA OCT DSX
8
ORI STA DRA DSX
9
ORI STA DRA DSX
10
ORI DAU STA DRA
11
ORI DAU STA
12
ORI DAU STA
13
ORI DAU STA
14
ORI EGE DAU STA
15
ORI EGE DAU STA
16
ORI EGE DAU STA
17
ORI EGE DAU STA
18
ORI EGE DAU STA
19
LMI ORI EGE STA
20
NTA LMI ORI EGE STA
21
NTA LMI ORI EGE STA
22
NTA LMI ORI EGE STA
23
NTA LMI ORI EGE STA
24
NTA LMI ORI EGE STA
25
NTA LMI ORI EGE STA
26
NTA LMI ORI EGE STA
27
NTA LMI ORI EGE STA
28
NTA ORI STA
29
NTA ORI STA
30
NTA ORI STA
31
NTA ORI STA
   



November 2019

SUN MON TUE WED THU FRI SAT
          1
NTA ORI STA
2
NTA ORI STA
3
NTA ORI STA
4
NTA ORI STA
5
NTA ORI STA
6
LEO NTA ORI STA
7
LEO NTA ORI STA
8
LEO NTA STA
9
LEO NTA STA
10
LEO NTA STA
11
LEO NTA STA
12
LEO NTA STA
13
NOO LEO NTA STA
14
NOO LEO NTA STA
15
NOO AMO LEO NTA STA
16
NOO AMO LEO NTA STA
17
NOO AMO LEO NTA STA
18
NOO AMO LEO NTA STA
19
NOO AMO LEO NTA STA
20
NOO AMO LEO NTA STA
21
NOO AMO LEO NTA
22
PHO NOO AMO LEO NTA
23
PHO NOO AMO LEO NTA
24
PHO NOO AMO LEO NTA
25
PHO NOO AMO LEO NTA
26
PHO NOO LEO NTA
27
PHO NOO LEO NTA
28
PHO NOO LEO NTA
29
PHO NOO LEO NTA
30
PHO NOO LEO NTA



December 2019

SUN MON TUE WED THU FRI SAT
1
PUP PHO NOO NTA
2
PUP PHO NOO NTA
3
HYD PUP PHO NOO NTA
4
GEM HYD PUP PHO NOO NTA
5
DLM GEM HYD MON PUP PHO NOO NTA
6
DLM GEM HYD MON PUP PHO NOO NTA
7
DLM GEM HYD MON PUP PHO NTA
8
DLM GEM HYD MON PUP PHO NTA
9
DLM GEM HYD MON PUP PHO NTA
10
DLM GEM HYD MON PUP NTA
11
DLM GEM HYD MON PUP
12
DLM COM GEM HYD MON PUP
13
DLM COM GEM HYD MON PUP
14
DLM COM GEM HYD MON PUP
15
DLM COM GEM HYD MON PUP
16
DLM COM GEM MON
17
DLM URS COM GEM MON
18
DLM URS COM MON
19
DLM URS COM MON
20
DLM URS COM MON
21
DLM URS COM
22
DLM URS COM
23
DLM URS COM
24
DLM URS
25
DLM URS
26
DLM URS
27
DLM
28
DLM QUA
29
DLM QUA
30
DLM QUA
31
DLM QUA
       

Pet Peeves

Here is a list of 10 irritations, in no particular order, that make me feel like an alien on my own planet.

  1. High color temperature headlights – Traditional automotive headlights have a yellowish-white color temperature of 3200K. Xenon headlights emit a bluish-white light around 4500K. LED lights are even bluer at around 6000K. These new “blue” headlights make me want to give up night driving altogether. They are too glary and too bright for oncoming traffic. Add in the same for so-called “fog” lights, and the result is often blinding for other drivers.
  2. High color temperature LED lights – While we’re on the topic of lighting, most indoor and outdoor LED lighting should have a color temperature between 2700K and 3000K. This provides a soothing yellow-white light instead of the garish and glary blue-white LED lights in common use today with a color temperature of 4000K or even higher.
  3. Dusk-to-dawn lighting – With the availability of modern light sources, control, and dimming technologies, most outdoor lighting does not need be on or running at full brightness all night long.
  4. Television advertisements – I don’t know how anyone can stand to watch television because there are so many advertisements. I’ve given up watching anything that has advertisement propaganda embedded within the program.
  5. Dystopian movies and television programs – Why would anyone find a dystopian portrayal of the future entertaining or even desirable? I find it utterly horrifying and we should do everything possible to make sure such a future never occurs. Furthermore, I find the amount of violence and aggression in movies and television appalling. This is entertainment? No thanks, I’ve got better things to do with my time.
  6. TV Screens in Restaurants – When I’m dining at a restaurant, just about the last thing I want to see is the distraction of one or more television screens. I’m there to enjoy the food and the company I’m with and screens of any kind are intrusive.
  7. Overuse of smartphones – So many people seem addicted to their smartphones. I don’t generally use one and get along just fine. As much as I use computers in my everyday life, I don’t want one with me everywhere I go. I am really thankful I grew up before personal computers and smartphones existed. Gives one a different perspective.
  8. Sports – I have absolutely no interest in sports. Physical fitness and healthful living, yes, but sports seems like a big waste of time. I don’t see how so many folks can get so excited about something that does absolutely nothing to make the world a better place.
  9. Hunting – I don’t see how anyone can derive pleasure out of depriving another animal of its life. It’s just sick. It is one thing to kill an animal if it is necessary for survival, or self-defense, but for sport it is disgusting. For necessary animal population control, why not use high-tech science-based birth control methods instead?
  10. Pets – I love seeing animals in nature, but have no interest in owning or taking care of a domesticated animal. I much prefer solitude or the company of people. I’m too busy to have any time for a pet, anyway. Don’t like it when you visit someone and their dog or cat jumps on you or licks you. Yuck.

Comet 46P/Wirtanen

Comet 46P/Wirtanen, 15 Dec 2018 6:54:21 – 6:59:21 UT, Dodgeville, WI (Photo by David Oesper)

Carl A. Wirtenen (1910-1990) was born in Kenosha, Wisconsin and nearly 71 years ago he discovered a comet on a photographic plate while doing a stellar proper motion survey at the Lick Observatory in California.

Comet 46P/Wirtanen orbits the Sun once every 5.44 years at a distance ranging from 1.06 AU at perihelion to 5.13 AU at aphelion.

Carl Wirtanen discovered five comets, but 46P/Wirtanen is the only one that is not a long-period comet. The others are C/1947 O1, C/1948 N1, C/1948 T1, and C/1956 F1-A.

Comet 46P/Wirtanen reached perihelion on Wednesday, December 12 at 4:38 p.m. CST, and made its closest approach to the Earth since its discovery (7.2 million miles) on Sunday, December 16 at 7:05 a.m. CST. It will not pass this close to Earth again until sometime after the year 2197.

The photo above was taken just 30 hours before Comet 46P/ Wirtanen made its closest approach to Earth. I used a digital SLR camera with 300mm telephoto lens piggybacked on the telescope I use for asteroid occultations. I was able to manually guide on the comet’s nucleus which was easily visible as a “fuzzy” star using a sensitive video camera imaging through the telescope. Comet 46P/Wirtanen’s nucleus is estimated to have diameter of just 3,900 ft., and it rotates once every 8.9 hours.

In the three-image sequence below you can definitely see the comet’s motion relative to the background stars.

Comet 46P/Wirtanen, 15 Dec 2018 6:38:17-6:41:18, 6:45:23 – 6:49:24, and 6:54:21 – 6:59:21 UT

How do you pronounce “Wirtanen”? See here.

NASA News Releases

I receive dozens of emails each day, and chances are you do, too.  But one email list I think you should seriously consider subscribing to is the NASA News Releases.  There have been 115 news releases and 185 media advisories issued so far this year, so that averages to about one email a day.  The quality of these news releases is consistently high—they are far better written and information rich than most of what clutters up our inboxes or what you’ll find on a typical internet news site.

Take, for example, the two news releases that were issued on December 10:

RELEASE 18-114
NASA’s Newly Arrived OSIRIS-REx Spacecraft Already Discovers Water on Asteroid

RELEASE 18-115
NASA’s Voyager 2 Probe Enters Interstellar Space

Subscribing is easy:

NASA news releases and other information are available automatically by sending an e-mail message with the subject line subscribe to hqnews-request@newsletters.nasa.gov. 
To unsubscribe from the list, send an e-mail message with the subject line unsubscribe to hqnews-request@newsletters.nasa.gov.

Exoplanets with Deep Transits

The list above shows the 35 stars presently known to dip in brightness by 0.02 magnitudes or more due to a transiting exoplanet.

The change in the star’s magnitude during transit is given by

\Delta m = 2.5\log_{10}\left ( 1+\delta \right )

where Δm is the drop in magnitude, and δ is the transit depth

The time between transits for these exoplanets ranges between 0.79 and 5.72 days, with a median period of 2.24 days.  You can generate your own ephemeris for any of these transiting exoplanets at:

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TransitView/nph-visibletbls?dataset=transits

The transit duration for these exoplanets ranges between 1.08 and 3.11 hours, with a median duration of 2.11 hours.

The exoplanets with the deepest transits, HATS-6 b at 0.035 magnitudes and Kepler-45 b at 0.034 magnitudes, cross stars that are 15.2 and 16.9 magnitude, respectively, so these events might be out of reach for most amateur photometrists.  The only other star hosting a transiting exoplanet with a Δm ≥ 0.03m is Tycho 5165-481-1 in Aquila (WASP-80 b) which at visual magnitude 11.9 is a better candidate for smaller instruments.  The brightest star on our list (by far) is HD 189733 in Vulpecula, magnitude 7.7, with a drop in brightness that is almost as good at 0.026 magnitudes.

References
Fakhouri, O. (2018). Exoplanet Orbit Database | Exoplanet Data Explorer. [online] Exoplanets.org. Available at: http://exoplanets.org/ [Accessed 11 Dec. 2018].