Repurposing an Existing Community

One approach to establishing a dark-sky, astronomy-friendly, community is to find a small town in a rural area that would be receptive to doing the following:

  1. Enact a comprehensive lighting ordinance that will be enforced
  2. Eliminate all dusk-to-dawn outdoor lighting
  3. Apply for International Dark Sky Community status

Obviously, this is going to be easier to do in a small community, and most likely one that is economically depressed.

What’s in it for them? What would the motivating factors be?

  • A commitment from X number of people that they would move to the community provided the community agrees to 1-3 above being done. Options for new residents would be to either purchase or rent an existing home/apartment/RV space/etc., or to build the same but land would have to be available.
  • The new residents would commit to working with the existing residents and businesses to improve the community and provide new opportunities, ensuring that this is a win-win situation for both existing and new residents.
  • The new residents would commit to doing some or all of the things outlined in the Mirador Astronomy Village specifications document, or something like it.
  • The influx of new residents and tourism will benefit all in the community, both economically and socially.

Does anyone know of a rural community that might be interested in putting their town “on the map” as an astronomy-friendly community for residents and visitors?

The Great Divide

A few quotes come to mind when considering the current hyperpartisan and politically polarized environment in the United States.

“The beatings will continue until morale improves.” – Anonymous

“Insanity is doing the same thing over and over again and expecting different results.” – Albert Einstein

“Human history becomes more and more a race between education and catastrophe.” – H. G. Wells

One thing is for sure. The systemic problems in our political system will remain firmly in place no matter who wins the election.

I want to live in a place where we can work together, despite our differences, to make real progress towards the following goals:

  • Free or inexpensive basic healthcare not tied to one’s employer
  • Free or inexpensive post-secondary education
  • Affordable housing and tiny house villages for the homeless
  • Universal Basic Income (UBI)
  • An economy based on building things that last and are able to be repaired or recycled, rather than rapidly consumed and thrown away
  • Currency that is neither artificially scarce nor debt-based, and that takes into account everything of value to society
  • Public policy based on a humanistic worldview where decisions are guided by facts not faith, science not religion
  • A gradual reduction in the world’s population through the only humane way available—having fewer children
  • Tight restrictions on gun ownership and training requirements for those who do own guns
  • Binding and enforceable international laws
  • A stronger and more effective United Nations
  • A completely decentralized power grid powered by renewable energy sources, primarily solar and wind
  • Substantially scale back on the use of fossil fuels
  • A strong public transportation system, including high-speed passenger rail

I’m sure those of you of a similar persuasion could add many more items to this list, but you get the idea which “side” I am on. (Hint: It is not the side that has most of the guns.)

There are many people who want these things. Wouldn’t it be nice if we could live someplace where we could work towards these goals without our every effort being blocked?

We have built a lifestyle that is economically and ecologically unsustainable. We are fast running out of time and options. Smart people address problems before they get to be crises.

What are our options, besides a slow, miserable, and probably violent descent into dystopia (i.e. life’s a bitch and then you die)?

  1. Divide the U.S. into autonomous enclaves
  2. Leave the U.S. (if anyone will have us)
  3. Form or join an intentional community where people with similar goals and beliefs can demonstrate to the wider world a better way to live, a better way to govern

1 and 3 are similar, but 3 would be on a much smaller scale—no more than about 150 people. Small is beautiful.

A few years ago, at a friend’s recommendation, I watched a movie based on a brilliant idea but crudely executed (and I do mean crudely): Idiocracy. It seems we are already well on the way to the dystopian existence portrayed in that 2006 movie. Though Idiocracy is brilliant satire, I would love to see a remake that is more discerning and family friendly so it can reach a wider audience.

There’s a great divide in my life, too. On the one hand, I want to finally live far away from city lights during my retirement years in an astronomy-friendly intentional community that has no dusk-to-dawn lighting. But on the other hand, I would love to live in a politically progressive city with a first-rate symphony orchestra and a vibrant classical music scene. Observational astronomy and classical music are my two biggest interests, but their venues are mutually incompatible.

Challenges, large and small.

Imagine

John Lennon

Imagine there’s no heaven
It’s easy if you try
No hell below us
Above us, only sky

Imagine all the people
Livin’ for today
Ah

Imagine there’s no countries
It isn’t hard to do
Nothing to kill or die for
And no religion, too

Imagine all the people
Livin’ life in peace
You

You may say I’m a dreamer
But I’m not the only one
I hope someday you’ll join us
And the world will be as one

Imagine no possessions
I wonder if you can
No need for greed or hunger
A brotherhood of man

Imagine all the people
Sharing all the world
You

You may say I’m a dreamer
But I’m not the only one
I hope someday you’ll join us
And the world will live as one

First Photograph of the Orion Nebula

Henry Draper (1837-1882)

On this date 140 years ago, American physician and prominent amateur astronomer Henry Draper (1837-1882) made the first successful photograph of the Great Nebula in Orion, now usually referred to as the Orion Nebula. He used an 11-inch telescope (an Alvan Clark refractor!) and an exposure time of 50 minutes for the black and white photograph.

First photograph of the Orion Nebula, September 30, 1880. (Henry Draper)

Draper continued to improve his technique, and a year and a half later he obtained a 137-minute exposure showing much more detail.

Photograph of the Orion Nebula, March 14, 1882. (Henry Draper)

It really is amazing how image recording technology has improved over the past century and a half! At its best, film-based photography had a quantum efficiency of only about 2%, which means that only 2 out of every 100 photons of light impinging on the photographic medium is actually recorded. The rest is reflected or absorbed. The human eye—when well dark adapted—has a quantum efficiency of 15% or better, easily besting photography. Why, then, do photographs of deep sky objects show so much more detail than what can be seen through the eyepiece? The explanation is that the human eye can integrate photons and hold an image for only about 0.1 second. Film, on the other hand, can hold an image much longer. Even with reciprocity failure, photographic media like film can collect photons for minutes or even hours, giving them a big advantage over the human eye. But charge-coupled devices (CCDs) are a considerable improvement over older technologies since they typically have a quantum efficiency of 70% up to 90% or more. The CCD has truly revolutionized both professional and amateur astronomy in recent decades.

Recent Orion Nebula CCD image by Robert Gendler

Luna 16: First Robotic Lunar Sample Return Mission

Fifty years ago this day, the Soviet Union’s Luna 16 robotic probe made a night landing in the Sea of Fertility. It drilled nearly 14 inches into the lunar regolith, collected 3.6 ounces of soil, and delivered its precious cargo to Earth four days later.

The astronauts on Apollo 11, 12, 14, 15, 16, and 17 between 1969 and 1972 brought back a total of 840 lbs of moon rocks and soil. Each successive Apollo mission brought back a larger amount of lunar material.

The Soviets brought back a total of 0.7 lbs of lunar soil through their robotic sample return missions Luna 16 (1970), Luna 20 (1972), and Luna 24 (1976).

So, excluding lunar meteorites that have befallen the Earth, a total of 840.7 lbs of lunar material has been brought to research laboratories here on Earth.

After a hiatus of over 44 years, China plans to launch two lunar sample return missions, Chang’e 5 in November 2020 and Chang’e 6 in 2023 or 2024. Chang’e 5 is expected to return at least 4.4 lbs of lunar material from nearly 7 ft. below the surface at its landing site in the Mons Rümker region of Oceanus Procellarum.

Chang’e is the Chinese goddess of the Moon, and is pronounced chong-EE.

Joaquín Rodrigo: The (Almost) Complete Music for Piano

Recently, I wrote about the extraordinary orchestral music of 20th-century Spanish composer Joaquín Rodrigo (1901-1999). In that piece, I lauded a collection of Rodrigo’s orchestral work, all conducted by the esteemed Mexican conductor Enrique Bátiz with three different orchestras. Today, I would like to share with you the best and most complete recordings of Rodrigo’s piano music, a two-disc set by Gregory Allen and Anton Nel (two piano and piano four hands works).

I wish other music CDs had as much detail about each of the pieces as the enclosed booklet by Gregory Allen and Linton Powell has, nicely indexed by CD track in the margins of the narrative. They write: “The present recordings represent the first complete collection of Rodrigo’s original piano music for two and four hands, omitting only a few transcriptions and lost early works.” In a footnote, they detail the works that are excluded. I am familiar with only one of these, the Cinco piezas del siglo XVI of 1937, which is worth seeking out.

At the end of the documentary Shadows and Light, made when Rodrigo was 90, there is a spellbinding performance of Zarabanda lejana (Distant Sarabande) of 1926. I’m pretty sure the recording they used was the one on these discs. The tempo and sensitivity of this performance is perfect. I have another recording that seems rushed by comparison, and it ruins the mood.

Here we have 2 hours and 33 minutes of delightful piano music composed by Joaquín Rodrigo, sure to increase your appreciation for this great 20th-century composer. Of course, I have a number of favorites.

  • Zarabanda lejana (Distant Sarabande)
  • Cinco piezas infantiles (Five children’s pieces), for two pianos
  • Sonatina para dos Muñecas (Sonatina for two Puppets), for piano four hands
  • Gran Marcha de los Subsecretarios (Grand March of the Subsecretaries), for piano four hands
  • Atardecer (Dusk), for piano four hands
  • À l’ombre de Torre Bermeja (In the Shadow of the Crimson Tower)
  • Plegaria de la Infanta de Castilla (Prayer of the Princess of Castile), from Cuatro piezas para piano

If you need any more convincing that this recording is a “must have”, here are words written by Joaquín Rodrigo himself.

“Gregory Allen’s recording of my works for piano is excellent. His magnificent technique and his authentically fine interpretation satisfy me completely.”

—Joaquín Rodrigo, Madrid, 1991

Video Meteors 2020 – I

During the first half of 2020, I serendipitously captured a whopping nine meteors on my telescope’s 17 x 11 arcminute video field of view while observing potential asteroid occultation events. I used the method described in There’s a Meteor in My Image to determine the radiant for each meteor. Here they are.

Antihelion meteor 22 March 2020 UT; Field location UCAC4 575-024067 in Gemini
Each frame is an exposure of 0.53s

The International Meteor Organization (IMO) identifies the antihelion source as “a large, roughly oval area of about 30˚ in right ascension and 15˚ in declination, centered about 12˚ east of the solar opposition point on the ecliptic, hence its name. It is not a true shower at all, but is rather a region of sky in which a number of variably, if weakly, active minor showers have their radiants.”

Sporadic meteor 10 Apr 2020 UT, Field location HD 119307 in Centaurus
Each frame is an exposure of 0.13s

A sporadic meteor is any meteor that does not come from a known radiant.

Sporadic meteor 14 Apr 2020 UT, Field location UCAC4 387-065649 in Libra
Each frame is an exposure of 0.27s (faint meteor in the upper right corner)
Possible Eta Aquariid meteor 28 April 2020 UT; Field location UCAC4 326-064938 in Corvus
Each frame is an exposure of 0.13s
Sporadic meteor or satellite? 8 May 2020 UT; Field location UCAC4 345-084929 in Ophiuchus
Each frame is an exposure of 0.03s

Meteors enter the Earth’s atmosphere at a speed between 10 and 70 km/s, and burn up at an altitude of about 80 km. For a sight line perpendicular to the meteor’s path, the angular velocity should range between 7˚ and 41˚ per second. This means a meteor should cross the 17′ x 11′ field of my video camera in 0.03 seconds or less. Field traversal will take longer than this the closer the meteor is to its radiant or anti-radiant point.

The lowest stable altitude a satellite can orbit is about 200 km, where it will have an orbital velocity on the order of 8 km/s. This is slower than the slowest meteors. For a sight line perpendicular to the satellite’s path, the maximum angular velocity a satellite should have is about 2˚ per second.

Given these admittedly BOTEC calculations, one could reasonably conclude that if the object traverses the field in a single frame, it is probably a meteor. If not (and it is not an airplane), it is a satellite.

The object in the 8 May 2020 video does appear to be moving slow enough to be a satellite, but because it is traveling much faster than satellites usually do it must be orbiting quite low, close to re-entry. I was not able to identify the satellite, which is often the case for the fastest-moving satellites. My camera is sensitive enough to pick up tiny pieces of space debris orbiting at low altitude, and though these objects are no doubt catalogued by military organizations, they do not generally show up in the publicly-available orbital element datasets for satellites.

Antihelion meteor or satellite? 12 May 2020 UT; Field location UCAC4 585-130160 in Pegasus
Each frame is an exposure of 0.27s

This one’s unusual in that there are two distinct “flare-ups” along the path. It is reasonably good match to the antihelion radiant for 12 May 2020, and though I have seen meteors experiencing outbursts along their paths, a more likely explanation for this event is that it is low altitude satellite with two “sun glint” events. What do you think?

Sporadic meteor 13 May 2020 UT; Field location UCAC4 348-150732 in Sagittarius
Each frame is an exposure of 0.53s
Antihelion meteor 17 June 2020 UT; Field location UCAC4 294-088825 in Lupus
Each frame is an exposure of 1.07s
Sporadic meteor 18 June 2020 UT; Field location UCAC4 330-150629 in Sagittarius
Each frame is an exposure of 0.53s

I was surprised to record so many meteors during the first half of 2020, as there is generally much less meteor activity between January and June than there is between July and December.

References

International Meteor Organization, 2o2o Meteor Shower Calendar, Jürgen Rendtel, ed. https://www.imo.net/files/meteor-shower/cal2020.pdf.

Mirador Astronomy Village

Photo by John Rummel, Madison WI

Since the beginning of February, I have been able dedicate 10+ hours each week towards creating an astronomy-friendly community called Mirador Astronomy Village. Will you join me in that effort?

Here’s the “placeholder” website:

https://miradorastrovillage.org/

And here are some recent posts I’ve made to Dark-Sky-Communities on groups.io (https://dark-sky-communities.groups.io/g/main) to give you an idea where we’re currently at with this exciting project.

Acquiring Land for Mirador Astronomy Village

The Mirador specifications document located in our Files section and here gives a lot of detail about our vision for an astronomy-friendly residential community and astronomy resort & learning center. But before any of this can be developed, we need to have land.

The next step for Mirador is to create a legal entity that can raise money for a land purchase.

Some challenges we face:

  • Mirador could be located in Arizona, New Mexico, or West Texas. We don’t want to limit our land search to one state, but incorporating in the state where land will be purchased is less complicated.
  • We need an attorney who is familiar with Arizona, New Mexico, and West Texas law, but especially with real estate law and corporate law.
  • Does anyone know an attorney who is interested in astronomy, might want to become involved with this project, and might be willing to do some pro bono work?
  • Does anyone know a fundraising professional who is interested in astronomy and might want to become involved with this project?

Our most immediate need is to find an attorney to help us create the legal entity that will be necessary to raise money for a land purchase. This legal entity will exist for one and only one purpose: to purchase land for Mirador Astronomy Village.

Here is what we currently envision for the land-purchase legal entity. Would appreciate your thoughts before we submit this to a prospective attorney.


Land Purchase

Issuance of Shares

  • 1 share = $1000
  • No limit on the number of shares that can be purchased
  • Initial shares and additional shares can be purchased at any time
  • Hold the money in an FDIC-insured interest-bearing account
  • Value of shares remains unchanged except for interest accrued
  • Shareholders can return shares and remove their investment (plus interest) at any time up through the point of the shareholders voting in favor of making an offer on a property but before an offer is actually made
  • 1 share = 1 vote
  • Funds can only be used to purchase a property for Mirador Astronomy Village; any leftover funds will be returned to the shareholders proportional to the number of shares they own.
  • If there are insufficient funds to purchase the property without financing, the shareholders will not be a party to that financing arrangement.
  • It is possible we may acquire land that is “partially donated”, that is the land owner may agree to sell us the land for the amount of funds we have raised to date.
  • Shareholders will be known as Community Founders.
  • After the property is purchased, the monetary value of the shares goes to $0.
  • Benefits for shareholders after the property is purchased will include free RV, camping, and astronomy access to the property as soon as it is acquired; after development, no-additional-cost benefits such as free access to astronomy programs will be offered.
  • Benefits will be proportional to the number of shares owned.
  • If Mirador Astronomy Village isn’t established on the property within five years, the property will be sold and the proceeds returned to the shareholders in proportion to the number of shares they own.

Some Reasons Why I Want to Live in a Dark-Sky Community

Posted 13 July 2020

I drove 20 miles round-trip early Saturday morning to view Comet NEOWISE (C/2020 F3) for the first time. It is beautiful! Easily visible to the unaided eye and spectacular in binoculars. And now, in the more convenient evening sky!

I had to trespass onto private land (as I often do) because we are not allowed to be in any of our state parks here in Wisconsin during the hours of 11:00 p.m. to 6:00 a.m. (unless you are a paid camper at a campsite).

One of my motivations for living in a dark-sky community is having a great view of a comet like C/2020 F3 literally right outside my door night after night. The same goes for watching meteors. The visibility of comets and meteors are severely impacted by light pollution—both the general urban skyglow but also nearby lights. Along with just about every other aspect of observational astronomy.

All my adult life I have spent significant time and energy educating (and becoming educated myself) about light pollution, environmentally-friendly lighting, and, of course, astronomy. There have been small victories, yes, but overall I feel my contributions have been a drop in the proverbial bucket.

Living in a “regular community” (as I have all my life), there is always the trepidation with every new neighbor or lighting technology change that your view of the night sky will be degraded even further than it already has, and there is not a darned thing you can do about it if the perpetrator (be it a neighbor or the city) chooses to marginalize you and your kindly-presented concerns. Heck, this can even be a problem living in a rural area. When I had my Outdoor Lighting Associates, Inc. business in Iowa from 1994-2005, I can’t count the many times I got a call from a distressed rural resident that had a new neighbor who decided to light up their place like Las Vegas.

Sure, a lighting ordinance would help a lot, but in most cities and towns these days they’ll look at you like you’re from Mars if you try to make enacting one a priority.

There are many advantages to living in a small community, but where I live now (population 4,700) there is no community will nor interest in reigning in bad lighting or in protecting the night sky. However, in 1999 I was deeply involved with writing a lighting ordinance and getting it approved in Ames, Iowa, a university town of 50,000 (at the time). Being a well-educated university town had a lot to do with our success there. Those were kinder, gentler times then, too.


Lighting at Mirador

I’d like to take this opportunity to explain more about the outdoor lighting aspects of an “astronomy-friendly” community. Indoor lighting would have no restrictions except the amount of light shining outdoors at night would need to be controlled with some sort of window covering.

Ideally, an astronomy-friendly community would not allow any dusk-to-dawn lighting. Why have a light shining all night long when most of the night no one will be making use of its illumination? Modern light sources such as LEDs, occupancy sensors, and control electronics have advanced to the point (both in terms of technology and affordability) that dusk-to-dawn lighting is no longer needed, at least not in the kind of small community we are talking about here. I would like Mirador Astronomy Village to be an ongoing demonstration project for the wider world showing a better way to do outdoor lighting. By “better” I mean lighting that provides needed illumination where and when it is needed without adversely affecting the nighttime environment, including our view of the night sky. By “better” I also mean using passive reflective or light-colored materials where possible to reduce the need for—or brightness of—outdoor lighting.

There’s a lot to be said in favor of using “personal lighting devices”, also known as flashlights, when walking about at night.

The permanent outdoor lighting that is installed should be properly shielded and directed so that only what needs to be illuminated is illuminated, thus eliminating glare, light trespass, and direct uplight. The right amount of light for the intended task should be used, never more than is needed.

We certainly will need to be mindful of anyone visiting or living in our community with vision limitations. This is most likely going to be an issue in the areas open to the public at night. Observational astronomers, as a general rule, have learned to see better at low illumination levels through familiarity and experience, but the same is not true for the general public. Accommodations will need to be made with this in mind, and I would expect the public areas to have more illumination.


Getting this project off the ground has been challenging in the midst of a pandemic. There is at least one of several things you can do right now to help this project along.

  1. Post a comment here!
  2. Join the Dark-Sky-Communities discussion group at https://dark-sky-communities.groups.io/g/main. There are several subscription options for your convenience, and even if you subscribe to receive individual emails, the traffic on this moderated group is light and focused specifically on astronomy-friendly residential communities.
  3. Visit the Mirador Astronomy Village website.
  4. Take the time to read through the detailed Mirador Astronomy Village specifications document.
  5. Send me an email at DaveDarkSky@mac.com or call me at 608-930-2120 to discuss.
  6. Spread the word! There may be only a half a dozen people in the United States who can help me to make Mirador Astronomy Village a reality. How do I reach them?

Thank you!

Photo by John Rummel, Madison WI

Apollo 11

On Sunday, July 20, 1969, astronauts Neil Armstrong and Buzz Aldrin landed the Apollo 11 lunar module, Eagle, on the surface of the Moon at 3:17 p.m. CDT. Later that day, Armstrong, age 38, and Aldrin, age 39, became the first human beings to walk on another world, 51 years ago this day. Fifty-one years before that, World War I was nearing its end while the 1918 flu pandemic was ramping up in its fifth month of a twenty-six month ordeal.

Armstrong and Aldrin landed at lunar latitude 0.7° N and longitude 23.5° E, in Mare Tranquillitatis (The Sea of Tranquillity). Back here on Earth, the lunar phase was waxing crescent (35% illuminated), and the Moon set that night in Dodgeville at 11:23 p.m.—just a few minutes before Armstrong and Aldrin returned to the lunar module after spending over two hours on the surface of the Moon.

Neil Armstrong stepped down onto the lunar surface at 9:56 p.m. CDT, followed by Buzz Aldrin at 10:15 p.m. After exploring the lunar surface and setting up several scientific instruments, Buzz Aldrin returned to the lunar module at 12:01 a.m., followed by Neil Armstrong at 12:09 a.m. Monday morning.

After five hours of work stowing samples and other housekeeping tasks, Armstrong and Aldrin tried to get some sleep during a scheduled seven hour rest period. However, there were no beds in the lunar module—not even any chairs! Armstrong tried to sleep on the ascent engine cover in the rear of the cabin and Aldrin tried to sleep curled up on the floor. Adding to their discomfort, both astronauts had to keep their spacesuits on. And the lunar module was noisy, bright light leaked into the cabin, and they were too excited to sleep. Aldrin got about two hours of restless sleep. Armstrong got none.

The lunar module took off at 12:54 p.m. Monday afternoon, docked with the command module piloted by Michael Collins at 4:35 p.m., and then the astronauts began their journey home.

One of the little known facts of the Apollo missions is all the high-tech “garbage” that was left behind on the lunar surface to allow the astronauts to bring back more moon rocks. All in all, over 800 lbs. of moon rocks and lunar soil were brought back to Earth during the six lunar landing missions, the last of which returned to Earth on December 19, 1972.

Comet NEOWISE (C/2020 F3)

Finally, a bright comet! Comet C/2020 F3 NEOWISE was discovered on March 27, 2020 by the NEOWISE space telescope. NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) is the current extended “warm” mission of WISE after its hydrogen coolant became depleted.

Currently visible in the morning twilight sky, Comet NEOWISE is already a naked-eye object and is spectacular in binoculars, low in the NE, below and a little to the left of the bright star Capella. Soon it will be moving into the evening sky, though it is expected to diminish in brightness somewhat as it gets further from the Sun. Here’s an ephemeris for Comet NEOWISE for July and August showing when it will be at least 10˚ above the horizon in a sky that is not brightened by either twilight or moonlight. Avoiding light pollution, however, is up to you. Enjoy!

Comet naming these days is a mess! For one, some of the acronyms used for the automated surveys that discover them are unattractive. Thank heavens neither of the two comets named ASASSN (C/2017 O1 and C/2018 N2) ever became as bright as our current comet!

There were three comets NEOWISE in 2014, three in 2015, three in 2016, one in 2017, two in 2018, two in 2019, and one (so far) in 2020.

Comet NEOWISE

C/2014 C3
P/2014 L2
C/2014 N3
P/2015 J3
C/2015 X8
C/2015 YG1
C/2016 B1
C/2016 C2
C/2016 U1
C/2017 C1
C/2018 EN4
C/2018 N1
C/2019 H1
C/2019 L2
C/2020 F3

Might I suggest that we give this year’s first NEOWISE comet the following name?

Comet NEOWISE 15 (C/2020 F3)

Comet NEOWISE (C/2020 F3) 19 July 2020 3:21:59 UT 30s 55 mm f/4 ISO 1600 Canon EOS 100D
Photo by David Oesper
Comet NEOWISE (C/2020 F3) 20 July 2020 3:38:57 UT 3m 55 mm f/4.5 ISO 1600 Canon EOS 100D
Photo by David Oesper
Comet NEOWISE (C/2020 F3) 23 July 2020 3:22:17 UT 2m 55 mm f/4 ISO 1600 Canon EOS 100D
Photo by David Oesper

Pictures at an Exhibition

Modest Mussorgsky (1839-1881)

If you listen to much classical music, you are no doubt familiar with Modest Mussorgsky’s Pictures at an Exhibition, orchestrated by Maurice Ravel (1875-1937) in 1922. But have you heard Mussorgsky’s original version for piano, written in 1874? A fabulous recording by Russian-born American pianist Natasha Paremski was released just last year, and I highly recommend it. She also wrote the liner notes, which really adds to your understanding of the piece and her enthusiasm for it. Following Pictures is Variations on a Theme by Tchaikovsky, by contemporary composer, Fred Hersch. I like the piece, which he wrote for Paremski. It is based on one of the beautiful melodies in Tchaikovsky’s Symphony No. 4. I’m sure you will recognize it.

Modest Mussorgsky was a musical rebel and had his demons to contend with, including the alcoholism that ended his life at the young age of 42. Though his character and compositional talents have often been maligned, I think there is more to this man than the caricatures, even of his contemporaries, tell. Stripping away the orchestration provided by Ravel and others, and listening to this work in its raw pianistic form, you will find here a work of true genius, bold and viscerally beautiful.