## The Early Radio Universe

As the expanding universe cooled, the first neutral1 hydrogen atoms formed about 380,000 years after the Big Bang (ABB), and most of the hydrogen in the universe remained neutral until the first stars began forming at least 65 million years ABB.

The period of time from 380,000 to 65 million years or so ABB is referred to as the “dark ages” since at the beginning of this period the cosmic background radiation from the Big Bang had redshifted from visible light to infrared so the universe was truly dark (in visible light) until the first stars began to form at the end of this period.

All the while, neutral hydrogen atoms occasionally undergo a “spin-flip” transition where the electron transitions from the higher-energy hyperfine level of the ground state to the lower-energy hyperfine level, and a microwave photon of wavelength 21.1061140542 cm and frequency 1420.4057517667 MHz is emitted.

Throughout the dark ages, the 21 cm emission line was being emitted by the abundant neutral hydrogen throughout the universe, but as the universe continued to expand the amount of cosmological redshift between the time of emission and the present day has been constantly changing. The longer ago the 21 cm emission occurred, the greater the redshift to longer wavelengths. We thus have a great way to map the universe during this entire epoch by looking at the “spectrum” of redshifts of this particular spectral line.

380,000 and 65 million years ABB correspond to a cosmological redshift (z) of 1,081 and 40, respectively. We can calculate what the observed wavelength and frequency of the 21 cm line would be for the beginning and end of the dark ages.

$\lambda _{obs} = (z+1)\cdot \lambda_{emit}$

The observed wavelength (λobs) for the 21 cm line (λemit) at redshift (z) of 1,081 using the above equation gives us 22,836.8 cm or 228.4 meters.

$\nu = \frac{c}{\lambda }$

That gives us a frequency (ν) of 1.3 MHz (using the equation above), where the speed of light c = 299,792,458 meters per second.

So a 21 cm line emitted 380,000 years ABB will be observed to have a wavelength of 228.4 m and a frequency of 1.3 MHz.

Using the same equations, we find that a 21 cm line emitted 65 Myr ABB will be observed to have a wavelength of 8.7 m and a frequency of 34.7 MHz.

We thus will be quite interested in taking a detailed look at radio waves in the entire frequency range 1.3 – 34.7 MHz, with corresponding wavelengths from 228.4 m down to 8.7 m.2

The interference from the Earth’s ionosphere and the ever-increasing cacophony of humanity’s radio transmissions makes observing these faint radio signals all but impossible from anywhere on or near the Earth. Radio astronomers and observational cosmologists are planning to locate radio telescopes on the far side of the Moon—both on the surface and in orbit above it—where the entire mass of the Moon will effectively block all terrestrial radio interference. There we will finally hear the radio whispers of matter before the first stars formed.

1 By “neutral” we mean hydrogen atoms where the electron has not been ionized and resides in the ground state—not an excited state.

2 Incidentally, the 2.7 K cosmic microwave background radiation which is the “afterglow” of the Big Bang itself at the beginning of the dark ages (380,000 years ABB), peaks at a frequency between 160 and 280 GHz and a wavelength around 1 – 2 mm. So this is a much higher frequency and shorter wavelength than the redshifted 21 cm emissions we are proposing to observe here.

References

Ananthaswamy, Anil, “The View from the Far Side of the Moon”, Scientific American, April 2021, pp. 60-63

Burns, Jack O., et al., “Global 21-cm Cosmology from the Farside of the Moon”, https://arxiv.org/ftp/arxiv/papers/2103/2103.05085.pdf

Koopmans, Léon, et al., “Peering into the Dark (Ages) with Low-Frequency Space Interferometers”, https://arxiv.org/ftp/arxiv/papers/1908/1908.04296.pdf

Ned Wright’s Javascript Cosmology Calculator, https://astro.ucla.edu/~wright/CosmoCalc.html

## Distant Supernovae Evince Accelerating Expansion of our Universe

In 1998, it was discovered by two independent research teams through the study of distant Type Ia supernovae that our expanding universe has an expansion rate that is accelerating.  This was a completely unexpected result.

A Type Ia supernova occurs in a close binary star system where mass from one star accretes onto a white dwarf until it reaches a critical mass and a supernova explosion ensues.  Many of these events, chosen carefully, can be used as “standard candles” for distance determination.  The intrinsic peak luminosity of a typical Type Ia supernova is a function of the light curve decay time.  Type Ia supernovae whose luminosity curves rise and fall more rapidly are less intrinsically luminous at maximum brightness.  Type Ia supernovae whose luminosity curves rise and fall more slowly are more intrinsically luminous at maximum brightness.

If we know the intrinsic luminosity of an object (the absolute magnitude) and can measure the apparent luminosity of that object (the apparent magnitude), we can calculate its distance.  Type Ia supernovae are on the order of a million times brighter than Cepheid variables, and are in fact the brightest of all “normal” supernovae.  They can thus be used to measure the distance to extremely distant objects.

The evidence for an accelerating universe is that these distant supernovae appear fainter than they should be at their measured cosmological redshift, indicating that they are farther away than expected.  A number of possible explanations for the faint supernova phenomenon had to be eliminated before the conclusion that the universe’s expansion is accelerating could be arrived at, including

(1) Do distant supernovae (and therefore supernovae that occurred many billions of years ago) have the same intrinsic brightness as comparable nearby supernovae that occurred in the recent past?

(2) Are the distant supernovae being dimmed by galactic and intergalactic extinction due to dust and gas along our line of sight to the supernova?

As described above, the shape of the supernova light curve indicates the supernova’s intrinsic brightness, analogous in a way to the period of a Cepheid indicating its intrinsic brightness.  Though there is evidence that ancient supernovae may have been a little different than those today because of lower metallicity, the effect is small and doesn’t change the overall conclusion of an accelerating universe.  However, properly characterizing the influence of metallicity will result in less uncertainly in distance and therefore less uncertainty in the acceleration rate of the universe.

Extinction is worse at bluer wavelengths, but how the apparent magnitude changes as a function of distance is independent of wavelength, so the two effects can be disentangled.  2011 Nobel physics laureate Adam Riess in his award-winning 1996 Ph.D. thesis developed a “Multicolor Light Curve Shape Method” to analyze the light curves of a large ensemble of type Ia supernovae, both near and far, allowing him to determine their distances more accurately by removing the effects of extinction.