A Case for Ten Planets

Clyde Tombaugh (1906-1997) spent the first fifteen years of his life on a farm near Streator, Illinois, and then his family moved to a farm near Burdett, Kansas (no wonder he got interested in astronomy!), and he went to high school there. Then, on February 18, 1930, Tombaugh, a self-taught amateur astronomer and telescope maker, discovered the ninth planet in our solar system, Pluto. It had been nearly 84 years since the eighth planet, Neptune, had been discovered, in 1846. And it would be another 62 years before another trans-Neptunian object (TNO) would be discovered.

Clyde Tombaugh made his discovery using a 13-inch f/5.3 photographic refractor at the Lowell Observatory in Flagstaff, Arizona.

Clyde Tombaugh was 24 years old when he discovered Pluto. He died in 1997 at the age of 90 (almost 91). I was very fortunate to meet Prof. Tombaugh at a lecture he gave at Iowa State University in 1990. At that lecture, he told a fascinating story about the discovery of Pluto, and I remember well his comment that he felt certain that no “tenth planet” larger than Pluto exists in our solar system, because of the thorough searches he and others had done since his discovery of Pluto. But, those searches were done before the CCD revolution, and just two years later, the first TNO outside the Pluto-Charon system, 15760 Albion (1992 QB1), would be discovered by David Jewitt (1958-) and Jane Luu (1963-), although only 1/9th the size of Pluto.

Pluto is, by far, the smallest of the nine planets. At only 2,377 km across, Pluto is only 2/3 the size of our Moon! Pluto has a large moon called Charon (pronounced SHAR-on) that is 1,212 km across (over half the size of Pluto), discovered in 1978 by James Christy (1938-). Two additional moons were discovered using the Hubble Space Telescope (HST) in 2005: Hydra (50.9 × 36.1 × 30.9 km) and Nix (49.8 × 33.2 × 31.1 km). A fourth moon was discovered using HST in 2011: Kerberos (10 × 9 × 9 km). And a fifth moon, again using HST, in 2012: Styx (16 × 9 × 8 km).

Pluto has been visited by a single spacecraft. New Horizons passed 12,472 km from Pluto and 28,858 km from Charon on July 14, 2015. Then, about 3½ years later, New Horizons passed 3,538 km from 486958 Arrokoth, on January 1, 2019.

Only one other TNO comparable in size to Pluto (or larger) is known to exist. 136199 Eris and its moon Dysnomia were discovered in 2005 by Mike Brown (1965-), Chad Trujillo (1973-), and David Rabinowitz (1960-). It is currently estimated that Eris is 97.9% the size of Pluto. Not surprisingly, in 2006 Pluto was “demoted” by the IAU from planethood to dwarf planet status. (Is not a “dwarf planet” a planet? Confusing…)

My take on this is that Pluto should be considered a planet along with Eris, of course. The definition of “planet” is really rather arbitrary, so given that Pluto was discovered 75 years before Eris, and 62 years before TNO #2, I think we should (in deference to the memory of Mr. Tombaugh, mostly) define a planet as any non-satellite object orbiting the Sun that is around the size of Pluto or larger. So, by my definition, there are currently ten known planets in our solar system. Is that really too many to keep track of?

There is precedent for including history in scientific naming decisions. William Herschel (1738-1822) is thought to have coined the term “planetary nebula” in the 1780s, and though we now know they have nothing to do with planets (unless their morphology is affected by orbiting planets), we still use the term “planetary nebula” to describe them today.

In the table below, you will find the eight “classical” planets, plus the five largest TNOs, all listed in order of descending size. (The largest asteroid, Ceres, is 939 km across, and is thus smaller than the smallest of these TNOs.)

You’ll see that the next largest TNO after Eris is Haumea, and that its diameter is only 67% that of Eris.

I’ve also listed the largest satellite for each of these objects. Venus and Mercury do not have a satellite—at least not at the present time.

It is amazing to note that both Ganymede and Titan are larger than the planet Mercury! And Ganymede, Titan, the Moon, and Triton are all larger than Pluto.

Largest Objects in the Solar System

Object Diameter (km) Largest Satellite Diameter (km) Size Ratio
Jupiter 139,822 Ganymede 5,268 3.8%
Saturn 116,464 Titan 5,149 4.4%
Uranus 50,724 Titania 1,577 3.1%
Neptune 49,244 Triton 2,707 5.5%
Earth 12,742 Moon 3,475 27.3%
Venus 12,104 N/A N/A N/A
Mars 6,779 Phobos 23 0.3%
Mercury 4,879 N/A N/A N/A
Pluto 2,377 Charon 1,212 51.0%
Eris 2,326 Dysnomia 700 30.1%
Haumea 1,560 Hiʻiaka 320 20.5%
Makemake 1,430 S/2015 (136472) 175 12.2%
Gonggong 1,230 Xiangliu 200 16.3%

Should any other non-satellite objects with a diameter of at least 2,000 km be discovered in our solar system, I think we should call them planets, too.

Asteroids: Take a Number

Italian monk, mathematician, and astronomer Giuseppe Piazzi (1746-1826) discovered an unexpected 8th magnitude object in Taurus near Mars and the Pleiades at around 8:00 p.m. on January 1, 1801 at his observatory in Palermo, Sicily. Thinking it a comet, he recorded the position of the object over several nights, until illness forced him to quit on February 11, just a few days after the object passed fairly close to Mars. By early May, the object was too close to the Sun in the western sky to observe, and Piazzi despaired of ever recovering the object. The now-famous 24-year-old German mathematician Carl Gauss (1777-1855) came to the rescue. Gauss used Piazzi’s positions to determine an orbit for Ceres (so named by Piazzi) and predicted from the scant data its future positions when it would once again be visible in the night sky. Ceres was recovered only a half-degree away from its predicted position by Hungarian astronomer Franz Xaver von Zach (1754-1832) on December 7, close to Denebola and not far from a close conjunction of the planets Jupiter and Saturn, and then confirmed after a long stretch of cloudy weather on December 31, 1801. The German amateur astronomer Heinrich Olbers (1758-1840) found Ceres at Bremen two days later on January 2, 1802. Olbers (of Olbers’ Paradox fame) discovered the second asteroid, Pallas, on March 28, 1802. Many, many more asteroids have been discovered since then. They are sequentially numbered, originally in order of their discovery date, but nowadays in order of their receiving a precise orbit determination.

Fast forward.

The names of asteroids 998 through 1002, discovered between August 6-15, 1923, have special significance.

998 Bodea – named in honor of German astronomer Johann Elert Bode (1747-1826), whose empirical relationship of the distances of the planets (Titius-Bode Law) indicated that there should be a planet between the orbits of Mars and Jupiter, touching off a massive search led by von Zach for a new planet.

999 Zachia – named in honor of Franz Xaver von Zach, who published Piazzi’s observations and recovered Ceres after Gauss’ predicted positions.

1000 Piazzia – named in honor of Giuseppe Piazzi, who discovered the first asteroid, 1 Ceres.

1001 Gaussia – named in honor of Carl Friedrich Gauss, who predicted the position of Ceres so it could be recovered.

1002 Olbersia – named in honor of Heinrich Olbers who was the second person to recover Ceres and the discoverer of the second asteroid, 2 Pallas (and 4 Vesta, by the way).

Fortunately, German astronomer Johann Daniel Titius (1729-1796) finally did get an asteroid named after him as well: 1998 Titius, discovered on February 24, 1938.

As of August 19, 2019, 796,422 minor planets (asteroids, trans-Neptunian objects, etc., but not including comets) have been discovered, but only 541,128 have orbits that are well-enough determined that they have been given a minor planet number. When a minor planet is first discovered, it is given a provisional designation based on the date of discovery. For example, 2019 PE3 was discovered during the first half of August 2019. After enough high-quality astrometric data has been collected to determine an accurate orbit, the minor planet is assigned a number. For example, minor planet 1996 TB1 was discovered by IOTA member George Viscome on October 5, 1996. It received a number, 35283, in 2000, and it received a name, Bradtimerson, earlier this year (2019). George submitted the name to the IAU after Brad Timerson, mentor and inspiration to many of the current crop of asteroid occultation observers, passed away on October 17, 2018. So we now have 35283 Bradtimerson.

The counts in the paragraph above show us that 67.9% of the minor planets that have been discovered have been assigned a number. Of these, only 21,922 (4.1%) have received a name.

Many asteroids have been given interesting or unusual names. Excluding the many fine individuals (real, not fictional) who have an asteroid named after them, here are a few of my favorites. There are a few here that are actually named after a person, but the minor planet name has a meaning beyond just the person’s name.

Remember, these are real places that will be visited someday. Oh, to be so lucky!

Lots of asteroids are awaiting names. Can you come up with some interesting, entertaining, or poetic ones? Give it a try, check this list or do a search here to make sure it is new, and then post a comment here and I’ll probably include your ideas in this article, giving you credit, of course. Be creative!

To get you in the spirit, here are a few names I’ve come up with:

  • Botanica
  • Distantia
  • Eternium
  • Gandalf
  • Hello & Goodbye [consecutive numbers, in celebration of The Beatles song written by Paul McCartney]
  • Luminaria
  • Morethanamote
  • Portentia
  • Symphonica

Have fun!