A Case for Ten Planets

Clyde Tombaugh (1906-1997) spent the first fifteen years of his life on a farm near Streator, Illinois, and then his family moved to a farm near Burdett, Kansas (no wonder he got interested in astronomy!), and he went to high school there. Then, on February 18, 1930, Tombaugh, a self-taught amateur astronomer and telescope maker, discovered the ninth planet in our solar system, Pluto. It had been nearly 84 years since the eighth planet, Neptune, had been discovered, in 1846. And it would be another 62 years before another trans-Neptunian object (TNO) would be discovered.

Clyde Tombaugh made his discovery using a 13-inch f/5.3 photographic refractor at the Lowell Observatory in Flagstaff, Arizona.

Clyde Tombaugh was 24 years old when he discovered Pluto. He died in 1997 at the age of 90 (almost 91). I was very fortunate to meet Prof. Tombaugh at a lecture he gave at Iowa State University in 1990. At that lecture, he told a fascinating story about the discovery of Pluto, and I remember well his comment that he felt certain that no “tenth planet” larger than Pluto exists in our solar system, because of the thorough searches he and others had done since his discovery of Pluto. But, those searches were done before the CCD revolution, and just two years later, the first TNO outside the Pluto-Charon system, 15760 Albion (1992 QB1), would be discovered by David Jewitt (1958-) and Jane Luu (1963-), although only 1/9th the size of Pluto.

Pluto is, by far, the smallest of the nine planets. At only 2,377 km across, Pluto is only 2/3 the size of our Moon! Pluto has a large moon called Charon (pronounced SHAR-on) that is 1,212 km across (over half the size of Pluto), discovered in 1978 by James Christy (1938-). Two additional moons were discovered using the Hubble Space Telescope (HST) in 2005: Hydra (50.9 × 36.1 × 30.9 km) and Nix (49.8 × 33.2 × 31.1 km). A fourth moon was discovered using HST in 2011: Kerberos (10 × 9 × 9 km). And a fifth moon, again using HST, in 2012: Styx (16 × 9 × 8 km).

Pluto has been visited by a single spacecraft. New Horizons passed 12,472 km from Pluto and 28,858 km from Charon on July 14, 2015. Then, about 3½ years later, New Horizons passed 3,538 km from 486958 Arrokoth, on January 1, 2019.

Only one other TNO comparable in size to Pluto (or larger) is known to exist. 136199 Eris and its moon Dysnomia were discovered in 2005 by Mike Brown (1965-), Chad Trujillo (1973-), and David Rabinowitz (1960-). It is currently estimated that Eris is 97.9% the size of Pluto. Not surprisingly, in 2006 Pluto was “demoted” by the IAU from planethood to dwarf planet status. (Is not a “dwarf planet” a planet? Confusing…)

My take on this is that Pluto should be considered a planet along with Eris, of course. The definition of “planet” is really rather arbitrary, so given that Pluto was discovered 75 years before Eris, and 62 years before TNO #2, I think we should (in deference to the memory of Mr. Tombaugh, mostly) define a planet as any non-satellite object orbiting the Sun that is around the size of Pluto or larger. So, by my definition, there are currently ten known planets in our solar system. Is that really too many to keep track of?

There is precedent for including history in scientific naming decisions. William Herschel (1738-1822) is thought to have coined the term “planetary nebula” in the 1780s, and though we now know they have nothing to do with planets (unless their morphology is affected by orbiting planets), we still use the term “planetary nebula” to describe them today.

In the table below, you will find the eight “classical” planets, plus the five largest TNOs, all listed in order of descending size. (The largest asteroid, Ceres, is 939 km across, and is thus smaller than the smallest of these TNOs.)

You’ll see that the next largest TNO after Eris is Haumea, and that its diameter is only 67% that of Eris.

I’ve also listed the largest satellite for each of these objects. Venus and Mercury do not have a satellite—at least not at the present time.

It is amazing to note that both Ganymede and Titan are larger than the planet Mercury! And Ganymede, Titan, the Moon, and Triton are all larger than Pluto.

Largest Objects in the Solar System

Object Diameter (km) Largest Satellite Diameter (km) Size Ratio
Jupiter 139,822 Ganymede 5,268 3.8%
Saturn 116,464 Titan 5,149 4.4%
Uranus 50,724 Titania 1,577 3.1%
Neptune 49,244 Triton 2,707 5.5%
Earth 12,742 Moon 3,475 27.3%
Venus 12,104 N/A N/A N/A
Mars 6,779 Phobos 23 0.3%
Mercury 4,879 N/A N/A N/A
Pluto 2,377 Charon 1,212 51.0%
Eris 2,326 Dysnomia 700 30.1%
Haumea 1,560 Hiʻiaka 320 20.5%
Makemake 1,430 S/2015 (136472) 175 12.2%
Gonggong 1,230 Xiangliu 200 16.3%

Should any other non-satellite objects with a diameter of at least 2,000 km be discovered in our solar system, I think we should call them planets, too.

Largest Satellites of Our Solar System

Here is a table of the 12 largest satellites in our solar system.  In addition to the size of each satellite, its home planet, its median distance from that planet, and discovery information, its median distance from its home planet is given in terms of the median lunar distance from the Earth.  Remarkably, Pluto’s moon Charon is just 0.05 lunar distances from Pluto, only 19,591 km.  Only one other of the largest satellites orbits closer to its home planet than the Moon orbits around the Earth, and that is Neptune’s moon Triton at 92% of the Earth-Moon distance.  At the other end of the scale, Saturn’s moon Iapetus orbits Saturn over nine times further away than the Moon orbits the Earth.

Now let’s look at the orbital eccentricity of each of the largest moons, and the orbital inclination relative to the equator of its home planet.

Our familiar Moon is really an oddball: it has the greatest orbital eccentricity of all the largest satellites, and, with the exception of Triton and Iapetus, by far the greatest orbital inclination relative to the equator of its home planet.  Triton is the oddball among oddballs as it is the only large satellite in our solar system that has a retrograde orbit: it orbits Neptune in a direction opposite the planet’s rotation.  Iapetus has an orbital inclination relative to Saturn’s equator almost as much as the Moon’s orbital inclination relative to the Earth’s equator, but this anomaly can perhaps be forgiven because Iapetus orbits so very far away from Saturn.  Its orbital period is over 79 days.

Note that the Moon’s orbital inclination relative to the equator of the Earth varies between 18.33˚ and 28.60˚.  This occurs because the intersection between the plane of the Moon’s orbit around the Earth and the plane of the Earth’s orbit around the Sun precesses westward, making an entire circuit every 18.6 years.

Ganymede

Titan

Callisto

Io

The Moon

Europa

Triton

Titania

Rhea

Oberon

Iapetus

Charon