The Dimmest Constellation

You are probably familiar with at least the names of the twelve constellations of the zodiac:

Aries
Taurus
Gemini
Cancer
Leo
Virgo
Libra
Scorpius
Sagittarius
Capricornus
Aquarius
Pisces

But are you familiar with the twelve constellations that have no stars brighter than 4th magnitude?

Antlia
Caelum
Camelopardalis
Chamaeleon
Coma Berenices
Corona Australis
Mensa
Microscopium
Norma
Sculptor
Sextans
Vulpecula

All but two of these dim constellations are, at least in part, visible from southern Arizona; Chamaeleon and Mensa require a trip south to see.

The southern constellation Mensa, the Table Mountain (declination -70° to -85°) is a ghost of a constellation, exhibiting no star brighter than magnitude 5.1. That’s 17 times fainter than Polaris! In fact, that’s fainter than all the stars of the Little Dipper asterism! Mensa does have one claim to fame, however. The Large Magellanic Cloud, satellite galaxy of our Milky Way galaxy, straddles most of the border that Mensa shares with Dorado, the Swordfish.

Mensa is far and away the dimmest constellation. But Mensa is a small constellation, bested in size by 74 of the 88 constellations. So perhaps it is not too surprising that a small constellation is less likely to harbor a bright star. Another measure of faint, perhaps, is to determine which of these twelve constellations with no star brighter than 4th magnitude is largest. That might be more remarkable, because one is less likely to find no bright stars in a large area of sky than in a small area of sky. By this measure, Camelopardalis, the Giraffe, wins without a doubt. Camelopardalis is the 18th largest constellation, and yet contains no star brighter than magnitude 4.0. It is that empty region you might have not noticed midway between Capella and Polaris, best viewed at evening twilight’s end during the month of February each year.

Like Sun, Like Moon

The Earth orbits the Sun once every 365.256363 (mean solar) days relative to the distant stars.  The Earth’s orbital speed ranges from 18.2 miles per second at aphelion, around July 4th, to 18.8 miles per second at perihelion, around January 3rd.  In units we’re perhaps more familiar with, that’s 65,518 mph at aphelion and 67,741 mph at perihelion. That’s a difference of 2,223 miles per hour!

As we are on a spinning globe, the direction towards which the Earth is orbiting is different at different times of the day.  When the Sun crosses the celestial meridian, due south, at its highest point in the sky around noon (1:00 p.m. daylight time), the Earth is orbiting towards your right (west) as you are facing south. Since the Earth is orbiting towards the west, the Sun appears to move towards the east, relative to the background stars—if we could see them during the day.  Since there are 360° in a circle and the Earth orbits the Sun in 365.256363 days (therefore the Sun appears to go around the Earth once every 365.256363 days relative to the background stars), the Sun’s average angular velocity eastward relative to the background stars is 360°/365.256363 days = 0.9856° per day.

The constellations through which the Sun moves are called the zodiacal constellations, and historically the zodiac contained 12 constellations, the same number as the number of months in a year.  But Belgian astronomer Eugène Delporte (1882-1955) drew up the 88 constellation boundaries we use today, approved by the IAU in 1930, so now the Sun spends a few days each year in the non-zodiacal constellation Ophiuchus, the Serpent Bearer. Furthermore, because the Earth’s axis is precessing, the calendar dates during which the Sun is in a particular zodiacal constellation is gradually getting later.

Astrologically, each zodiacal constellation has a width of 30° (360° / 12 constellations = 30° per constellation).  But, of course, the constellations are different sizes and shapes, so astronomically the number of days the Sun spends in each constellation varies. Here is the situation at present.

Constellation

Description

Sun Travel Dates

Capricornus

Sea Goat

Jan 19 through Feb 16

Aquarius

Water Bearer

Feb 16 through Mar 12

Pisces

The Fish

Mar 12 through Apr 18

Aries

The Ram

Apr 18 through May 14

Taurus

The Bull

May 14 through Jun 21

Gemini

The Twins

Jun 21 through Jul 20

Cancer

The Crab

Jul 20 through Aug 10

Leo

The Lion

Aug 10 through Sep 16

Virgo

The Virgin

Sep 16 through Oct 31

Libra

The Scales

Oct 31 through Nov 23

Scorpius

The Scorpion

Nov 23 through Nov 29

Ophiuchus

Serpent Bearer

Nov 29 through Dec 18

Sagittarius

The Archer

Dec 18 through Jan 19

The apparent path the Sun takes across the sky relative to the background stars through these 13 constellations is called the ecliptic.  A little contemplation, aided perhaps by a drawing, will convince you that the ecliptic is also the plane of the Earth’s orbit around the Sun.  The Moon never strays very far from the ecliptic in our sky, since its orbital plane around the Earth is inclined at a modest angle of 5.16° relative to the Earth’s orbital plane around the Sun.  But, relative to the Earth’s equatorial plane, the inclination of the Moon’s orbit varies between 18.28° and 28.60° over 18.6 years as the line of intersection between the Moon’s orbital plane and the ecliptic plane precesses westward along the ecliptic due to the gravitational tug of war the Earth and the Sun exert on the Moon as it moves through space.  This steep inclination to the equatorial plane is very unusual for such a large moon.  In fact, all four satellites in our solar system that are larger than our Moon (Ganymede, Titan, Callisto, and Io) and the one that is slightly smaller (Europa) all orbit in a plane that is inclined less than 1/2° from the equatorial plane of their host planet (Jupiter and Saturn).

Since the Moon is never farther than 5.16° from the ecliptic, its apparent motion through our sky as it orbits the Earth mimics that of the Sun, only the Moon’s angular speed is over 13 times faster, completing its circuit of the sky every 27.321662 days, relative to the distant stars.  Thus the Moon moves a little over 13° eastward every day, or about 1/2° per hour.  Since the angular diameter of the Moon is also about 1/2°, we can easily remember that the Moon moves its own diameter eastward relative to the stars every hour.  Of course, superimposed on this motion is the 27-times-faster-yet motion of the Moon and stars westward as the Earth rotates towards the east.

Now, take a look at the following table and see how the Moon’s motion mimics that of the Sun throughout the month, and throughout the year.

 

——— Moon’s Phase and Path ———

Date

Sun’s Path

New

FQ

Full

LQ

Mar 20

EQ

EQ

High

EQ

Low

Jun 21

High

High

EQ

Low

EQ

Sep 22

EQ

EQ

Low

EQ

High

Dec 21

Low

Low

EQ

High

EQ

New = New Moon

near the Sun

FQ = First Quarter

90° east of the Sun

Full = Full Moon

180°, opposite the Sun

LQ = Last Quarter

90° west of the Sun

EQ

= crosses the celestial equator heading north

High

= rides high (north) across the sky

EQ

= crosses the celestial equator heading south

Low

= rides low (south) across the sky

So, if you aren’t already doing so, take note of how the Moon moves across the sky at different phases and times of the year.  For example, notice how the full moon (nearest the summer solstice) on June 27/28 rides low in the south across the sky.  You’ll note the entry for the “Jun 21” row and “Full” column is “Low”.  And, the Sun entry for that date is “High”.  See, it works!