Mahler’s Farewell

Lewis Thomas (1913-1993) wrote in his essay Late Night Thoughts on Listening to Mahler’s Ninth Symphony,

“I cannot listen to the last movement of the Mahler Ninth without the door-smashing intrusion of a huge new thought: death everywhere, the dying of everything, the end of humanity…How do the young stand it? How can they keep their sanity? If I were very young, sixteen or seventeen years old, I think I would begin, perhaps very slowly and imperceptibly, to go crazy…If I were sixteen or seventeen years old…I would know for sure that the whole world was coming unhinged. I can remember with some clarity what it was like to be sixteen…I was in no hurry…The years stretched away forever ahead, forever…It never crossed my mind to wonder about the twenty-first century; it was just there, given, somewhere in the sure distance.”

Thomas was referring to the threat of nuclear war, which is still very much with us. Now, can you imagine as bad as the COVID-19 pandemic has been, what a nuclear war would be like? We need to rid our planet of these weapons, now.

As I was listening to the final movement of Gustav Mahler’s Symphony No. 9, the Adagio, this past Monday, I was also thinking, of course, about the frightening ravages of COVID-19, but also climate change and the precipitous decline in biological diversity caused by humans. All of this is driven by the fact that there are too many people on the planet, and the answer is not to kill (by whatever means) people who are already here, but to bring fewer children into the world so we can lower human population to a sustainable level in the coming generations. We could all have a higher standard of living without trashing the planet.

On Wednesday, the 50th anniversary of Earth Day, PBS aired a new BBC documentary, Climate Change: The Facts. I was riveted by the program, presented by Sir David Attenborough, who will turn 94 next month the day before I turn 64. David Attenborough is an international treasure. Watching him so expertly present, as he always does, the urgency of this climate crisis and remembering his many outstanding documentary series such as Life on Earth and The Living Planet, I became teary eyed knowing that he will not be with us for very much longer. You wish someone like David Attenborough or Carl Sagan could live for hundreds of years. Because, when our life is over, we will cease to exist as a conscious entity, for all eternity. I am now certain of that. Realizing that this is our one and only life gives one a very different perspective on what we are doing to this world—and to each other. Humanists value the sanctity of each human life more than anyone who believes in an afterlife. Humanists fully understand the enormous responsibility each of us living in this current generation has to ensure that our civilization does not descend into a dystopian existence. There will be no salvation, just unimaginable pain, suffering, and destruction of all that is good, if we fail.

I am so inspired by young Greta Thunberg, who features prominently in the documentary. Greta and the many other young activists around the world give me hope for the future. Her words and conviction brought more tears to my eyes. I may be 63, but I’m with you 100%, Greta. Sign me up!


In 1908 and 1909, Gustav Mahler finished his last completed work, the Symphony No. 9. There was much turmoil and tragedy in Mahler’s life prior to the writing of this symphony. His beloved oldest daughter, Maria Anna Mahler, died of scarlet fever and diphtheria on 5 July 1907 at the age of 4. Immediately after Maria’s death, Mahler learned that he had a defective heart. And his relationship with his wife Alma had become strained. Gustav Mahler died on 18 May 1911. He never heard his Symphony No. 9 performed. It received its premiere on 26 June 1912 in Vienna with Bruno Walter conducting the Vienna Philharmonic Orchestra.

The final movement of Mahler’s Symphony No. 9, the Adagio, is one of the most moving pieces of music I have ever heard. While listening to it, one thinks of all the beauty that was and is in the world, and how terribly much we have lost.

The most expressive recording of the Adagio I have heard is by the Chicago Symphony Orchestra, conducted by Sir Georg Solti (Decca 473 274-2). If this movement of 24:37 does not bring you to tears, I don’t know what will.

Population

Climate change is a serious problem requiring immediate attention. We need to reduce greenhouse gas emissions into our atmosphere as fast as possible. Half measures will not do. We are rapidly running out of time before the quality of life for all humans on planet Earth declines, especially for the economically disadvantaged.

A precipitous decline in biological diversity due to habitat loss and extinction of species is of greater concern, and yet it gets very little attention in the mainstream media. While climate change will render large areas of the Earth uninhabitable, biodiversity loss will lead to a partial or complete collapse of the ecosystem humans depend upon for food.

Getting even less attention is the cause of both of these problems: overpopulation. If you were born in 1973, the world’s human population is now twice what it was then. If you were born in 1952, there are three times as many people alive now than there were then. We have a climate emergency and a biodiversity emergency because we have a population emergency. The number of humans on this planet needs to decline, and the only humane way to accomplish that is to have fewer children. It is that simple.

And, yet, we often see this or that news article lamenting the fact that the birth rate in this or that country is too low. That’s crazy! A low birth rate should be a cause for celebration given the current state of the world and its environment. Certainly, a low birth rate does lead to some economic challenges, but these pale in comparison to the challenges we will face if population (and consumption) continue to grow.

As a humanist, I believe that we should do all we can to alleviate and eliminate human suffering. It is our highest moral calling. To be sure, some human suffering is inevitable and necessary when an individual makes poor decisions and suffers the consequences before hopefully making a mid-course correction. But the kind of suffering I am talking about is suffering that is imposed upon a person through no fault of their own, be it the cruelty of other human beings, or the cruelty of nature.

In this light we can see that our economic systems, governments, and most religions are utterly failing us. Nothing short of drastic changes will solve these problems. May wisdom, intelligence, ingenuity, and compassion guide us, rather than fear, ignorance, hatred, and dogma.

There is an organization dedicated to stabilizing human population throughout the world by lowering the birth rate: Population Connection. I encourage you to support their work as I do.

YearPopulationGrowth Factor
20207,794,798,7391.0
20197,713,468,1001.0
20187,631,091,0401.0
20177,547,858,9251.0
20167,464,022,0491.0
20157,379,797,1391.1
20147,295,290,7651.1
20137,210,581,9761.1
20127,125,828,0591.1
20117,041,194,3011.1
20106,956,823,6031.1
20096,872,767,0931.1
20086,789,088,6861.1
20076,705,946,6101.2
20066,623,517,8331.2
20056,541,907,0271.2
20046,461,159,3891.2
20036,381,185,1141.2
20026,301,773,1881.2
20016,222,626,6061.3
20006,143,493,8231.3
19996,064,239,0551.3
19985,984,793,9421.3
19975,905,045,7881.3
19965,824,891,9511.3
19955,744,212,9791.4
19945,663,150,4271.4
19935,581,597,5461.4
19925,498,919,8091.4
19915,414,289,4441.4
19905,327,231,0611.5
19895,237,441,5581.5
19885,145,426,0081.5
19875,052,522,1471.5
19864,960,567,9121.6
19854,870,921,7401.6
19844,784,011,6211.6
19834,699,569,3041.7
19824,617,386,5421.7
19814,536,996,7621.7
19804,458,003,5141.7
19794,380,506,1001.8
19784,304,533,5011.8
19774,229,506,0601.8
19764,154,666,8641.9
19754,079,480,6061.9
19744,003,794,1721.9
19733,927,780,2382.0
19723,851,650,2452.0
19713,775,759,6172.1
19703,700,437,0462.1
19693,625,680,6272.1
19683,551,599,1272.2
19673,478,769,9622.2
19663,407,922,6302.3
19653,339,583,5972.3
19643,273,978,3382.4
19633,211,001,0092.4
19623,150,420,7952.5
19613,091,843,5072.5
19603,034,949,7482.6
19592,979,576,1852.6
19582,925,686,7052.7
19572,873,306,0902.7
19562,822,443,2822.8
19552,773,019,9362.8
19542,724,846,7412.9
19532,677,608,9602.9
19522,630,861,5623.0
19512,584,034,2613.0
19502,536,431,0183.1

References
World Population Prospects 2019, United Nations.
Worldometers.info; 17 January, 2020; Dover, Delaware, U.S.A.

An Astronomy Retirement Community

Are any of you nearing retirement (as I am) or already retired who might be interested in moving to an astronomy-oriented retirement community? If you are, I encourage you to join the moderated Groups.io discussion group Dark-Sky Communities at

https://groups.io/g/Dark-Sky-Communities

I am working to establish such a community and would value your input and assistance. That work involves extensive research, networking, writing articles in various publications to reach a wider audience, finding a suitable developer, and seeking benefactors.

Some characteristics of the community I envision include:

  1. Rural location with a dark night sky, but not too far from a city with decent medical facilities, preferably to the northeast or northwest;
  2. Location with an abundance of clear nights and mild winters, probably in Arizona, New Mexico, or West Texas;
  3. Lighting within the community that does not interfere with astronomical activities, strictly enforced;
  4. Community is owned and operated by a benefit corporation or cooperative that will rent a house or apartment to each resident;
  5. Observatories will be available for rental by interested residents who will equip them;
  6. Pro-am collaborative research opportunities will be developed and nurtured;
  7. A community observatory and a public observatory for astronomy outreach will be constructed and maintained;
  8. Lodging will be available for visitors and guests;
  9. There will be opportunities for on-site income operating and maintaining the community or, alternatively, a reduction in monthly rental fees.

Many of us have spent a significant amount of time and energy over the years trying to rein in light pollution in our respective communities and in the wider world, with varying degrees of success. Those efforts should continue, but the grim reality is that light pollution is continuing to get worse almost everywhere.

The opportunity to live in a community of varied interests but with a common appreciation for the night sky and a natural nighttime environment will appeal to many of us. Furthermore, a dark-sky community will afford us opportunities to show the world at large a better way to live.

Traditionally, in the United States at least, if one wants to live under a dark and starry night sky, your only options are to purchase land and build a house on it, or purchase an existing rural home. Not only is buying and maintaining rural real estate unaffordable or impractical for many, many would prefer to live in a rural community, provided that the night sky and nighttime environment are vigorously protected. Rental will also make it easier to move into and out of the community as circumstances change.

Dark-Sky Communities

Back in 2006, I started a Yahoo! Group called DarkSkyCommunities. My goal was to provide a forum for astronomy enthusiasts and other like-minded individuals to discuss living where you’d have a star-filled night sky and never have to worry about streetlights or neighbor’s lights. Everyone else in the community would value the night sky and a natural nighttime environment as you do.

My approach with DarkSkyCommunities was not to be a heavy-handed moderator. I approved new members but after that, members were free to post (within reason) anything they wanted to. In that sense, it worked pretty well and there were very few postings I ever had to take down.

Unfortunately, astronomers know next to nothing about intentional community and intentional communitarians know next to nothing about astronomy, so the group drifted far from my original intent to a general discussion about light pollution, with “what’s wrong with the IDA” being a surprisingly popular topic for discussion. Eventually, though, a small number of individuals with a chip on their shoulder or an axe to grind became the most frequent posters, and that sort of poisoned the group.

So, I’d like to introduce to you DarkSkyCommunities 2.0: a Google group called Dark-Sky Communities. Here’s the description on the landing page:

Dark-Sky Communities is a discussion group for the development and nurturing of intentional communities where the night sky and the nighttime environment are valued and protected. The emphasis is on affordable, sustainable dark-sky communities where those of modest financial means can live, work, and retire. This group is moderated to keep the focus on intentional communities that are astronomy-friendly.

This time around I am going to approve (or disapprove) the messages posted to the group so that we stay on the topic of astronomy-friendly intentional communities. If you have an interest in this topic, please join!

Light pollution, despite our best efforts, is getting worse almost everywhere. LED lighting which had (and still has) so much promise is generally resulting in more lights, brighter lights, and bluer lights—not the direction we want to head.

Someday, I would like to live in a place where I can walk a few feet beyond my door, set down a lawn chair, and watch a meteor shower without being assaulted by streetlights, insecurity lights, glare, and skyglow. Is that too much to ask?

Would you like to live in a place like that, too? Let’s make it happen!

Stevens Point

I visited Stevens Point, Wisconsin for the first time over the Memorial Day weekend and, I have to say, this community of 26,000 is impressive. A great place to stay while you’re there is the Baymont Inn & Suites at 247 Division St. N. It is a short and pleasant walk to the University of Wisconsin – Stevens Point campus, the Schmeeckle Reserve (wow!), and the Green Circle Trail. Michele’s Restaurant is only a few blocks down the street. Great food!

I miss living in a college town. It is energizing to interact on a daily basis with well educated, intellectually curious, and cosmopolitan people who are passionate about their work. I lived in Ames, Iowa—where Iowa State University is located—for nearly 30 years, and I feel more at home in Stevens Point, a smaller community, than I do now in Ames. I think Stevens Point is the nicest community I have visited since leaving Ames in 2005. Definitely would be willing to live there someday. UW-Stevens Point even has a physics & astronomy department, an observatory, and a planetarium. Perhaps I could help out in retirement.

Some towns have a lot going for them even without a college or university—around here, Mineral Point and Spring Green come to mind. Some towns are at somewhat of a disadvantage because they have a name that is not particularly attractive. For example, Dodgeville, where I currently live and work, has a moniker that isn’t all that inviting. But there is no place so nice to live as a college town—for people like me, at least.

My primary civic interests are in gradually developing a well planned network of paved, off-road bike paths, walking trails through natural areas, a center for continuing education, a community astronomical observatory, and a comprehensive and well-enforced outdoor lighting ordinance to restore, preserve, and protect our nighttime environment and view of the night sky. Living in a community like Dodgeville, I don’t get the sense that there is enough interest or political will to make any of these things happen. I can’t do it alone.

Why Are We Here?

George F. R. Ellis writes in Issues in the Philosophy of Cosmology:

9.1.6 The metaphysical options
…there appear to be basically six approaches to the issue of ultimate causation: namely Random Chance, Necessity, High Probability, Universality, Cosmological Natural Selection, and Design. We briefly consider these in turn.
Option 1: Random Chance, signifying nothing. The initial conditions in the Universe just happened, and led to things being the way they are now, by pure chance. Probability does not apply. There is no further level of explanation that applies; searching for ‘ultimate causes’ has no meaning.
This is certainly logically possible, but not satisfying as an explanation, as we obtain no unification of ideas or predictive power from this approach. Nevertheless some implicitly or explicitly hold this view.
Option 2: Necessity. Things have to be the way they are; there is no other option. The features we see and the laws underlying them are demanded by the unity of the Universe: coherence and consistency require that things must be the way they are; the apparent alternatives are illusory. Only one kind of physics is self-consistent: all logically possible universes must obey the same physics.
To really prove this would be a very powerful argument, potentially leading to a self-consistent and complete scientific view. But we can imagine alternative universes! —why are they excluded? Furthermore we run here into the problem that we have not succeeded in devising a fully self-consistent view of physics: neither the foundations of quantum physics nor of mathematics are on a really solid consistent basis. Until these issues are resolved, this line cannot be pursued to a successful conclusion.

Option 3: High probability. Although the structure of the Universe appears very improbable, for physical reasons it is in fact highly probable.
These arguments are only partially successful, even in their own terms. They run into problems if we consider the full set of possibilities: discussions proposing this kind of view actually implicitly or explicitly restrict the considered possibilities a priori, for otherwise it is not very likely the Universe will be as we see it. Besides, we do not have a proper measure to apply to the set of initial conditions, enabling us to assess these probabilities. Furthermore, application of probability arguments to the Universe itself is dubious, because the Universe is unique. Despite these problems, this approach has considerable support in the scientific community, for example it underlies the chaotic inflationary proposal. It attains its greatest power in the context of the assumption of universality:
Option 4: Universality. This is the stand that “All that is possible, happens”: an ensemble of universes or of disjoint expanding universe domains is realized in reality, in which all possibilities occur. In its full version, the anthropic principle is realized in both its strong form (if all that is possible happens, then life must happen) and its weak form (life will only occur in some of the possibilities that are realized; these are picked out from the others by the WAP, viewed as a selection principle). There are four ways this has been pursued.
1: Spatial variation. The variety of expanding universe domains is realised in space through random initial conditions, as in chaotic inflation. While this provides a legitimate framework for application of probability, from the viewpoint of ultimate explanation it does not really succeed, for there is still then one unique Universe whose (random) initial conditions need explanation. Initial conditions might be globally statistically homogeneous, but also there could be global gradients in some physical quantities so that the Universe is not statistically homogeneous; and these conditions might be restricted to some domain that does not allow life. It is a partial implementation of the ensemble idea; insofar as it works, it is really a variant of the “high probability” idea mentioned above. If it was the more or less unique outcome of proven physics, then that would provide a good justification; but the physics underlying such proposals is not even uniquely defined, much less tested. Simply claiming a particular scalar field with some specific stated potential exists does not prove that it exists!
2: Time variation. The variety of expanding universe domains could be realised across time, in a universe that has many expansion phases (a Phoenix universe), whether this occurs globally or locally. Much the same comments apply as in the previous case.
3: Quantum Mechanical. It could occur through the existence of the Everett-Wheeler “many worlds” of quantum cosmology, where all possibilities occur through quantum branching. This is one of the few genuine alternatives proposed to the Copenhagen interpretation of quantum mechanics, which leads to the necessity of an observer, and so potentially to the Strong Anthropic interpretation considered above. The many-worlds proposal is controversial: it occurs in a variety of competing formulations, none of which has attained universal acceptance. The proposal does not provide a causal explanation for the particular events that actually occur: if we hold to it, we then have to still explain the properties of the particular history we observe (for example, why does our macroscopic universe have high symmetries when almost all the branchings will not?). And above all it is apparently untestable: there is no way to experimentally prove the existence of all those other branching universes, precisely because the theory gives the same observable predictions as the standard theory.
4: Completely disconnected. They could occur as completely disconnected universes: there really is an ensemble of universes in which all possibilities occur, without any connection with each other. A problem that arises then is, What determines what is possible? For example, what about the laws of logic themselves? Are they inviolable in considering all possibilities? We cannot answer, for we have no access to this multitude of postulated worlds. We explore this further below.
In all these cases, major problems arise in relating this view to testability and so we have to query the meaningfulness of the proposals as scientific explanations. They all contradict Ockham’s razor: we “solve” one issue at the expense of envisaging an enormously more complex existential reality. Furthermore, they do not solve the ultimate question: Why does this ensemble of universes exist? One might suggest that ultimate explanation of such a reality is even more problematic than in the case of single universe. Nevertheless this approach has an internal logic of its own which some find compelling.
Option 5: Cosmological Natural Selection. If a process of re-expansion after collapse to a black hole were properly established, it opens the way to the concept not merely of evolution of the Universe in the sense that its structure and contents develop in time, but in the sense that the Darwinian selection of expanding universe regions could take place, as proposed by Smolin. The idea is that there could be collapse to black holes followed by re-expansion, but with an alteration of the constants of physics through each transition, so that each time there is an expansion phase, the action of physics is a bit different. The crucial point then is that some values of the constants will lead to production of more black holes, while some will result in less. This allows for evolutionary selection favouring the expanding universe regions that produce more black holes (because of the favourable values of physical constants operative in those regions), for they will have more “daughter” expanding universe regions. Thus one can envisage natural selection favouring those physical constants that produce the maximum number of black holes.
The problem here is twofold. First, the supposed ‘bounce’ mechanism has never been fully explicated. Second, it is not clear—assuming this proposed process can be explicated in detail—that the physics which maximizes black hole production is necessarily also the physics that favours the existence of life. If this argument could be made water-tight, this would become probably the most powerful of the multiverse proposals.
Option 6: Purpose or Design. The symmetries and delicate balances we observe require an extraordinary coherence of conditions and cooperation of causes and effects, suggesting that in some sense they have been purposefully designed. That is, they give evidence of intention, both in the setting of the laws of physics and in the choice of boundary conditions for the Universe. This is the sort of view that underlies Judaeo-Christian theology. Unlike all the others, it introduces an element of meaning, of signifying something. In all the other options, life exists by accident; as a chance by-product of processes blindly at work.
The prime disadvantage of this view, from the scientific viewpoint, is its lack of testable scientific consequences (“Because God exists, I predict that the density of matter in the Universe should be x and the fine structure constant should be y”). This is one of the reasons scientists generally try to avoid this approach. There will be some who will reject this possibility out of hand, as meaningless or as unworthy of consideration. However it is certainly logically possible. The modern version, consistent with all the scientific discussion preceding, would see some kind of purpose underlying the existence and specific nature of the laws of physics and the boundary conditions for the Universe, in such a way that life (and eventually humanity) would then come into existence through the operation of those laws, then leading to the development of specific classes of animals through the process of evolution as evidenced in the historical record. Given an acceptance of evolutionary development, it is precisely in the choice and implementation of particular physical laws and initial conditions, allowing such development, that the profound creative activity takes place; and this is where one might conceive of design taking place. [This is not the same as the view proposed by the ‘Intelligent Design’ movement. It does not propose that God tweaks the outcome of evolutionary processes.]
However from the viewpoint of the physical sciences per se, there is no reason to accept this argument. Indeed from this viewpoint there is really no difference between design and chance, for they have not been shown to lead to different physical predictions.

A few comments.

1: Random chance. At first, this strikes one as intellectual laziness, but perhaps it is more a reflection of our own intellectual weakness. More on that in a moment.

2: Necessity. Our intellectual journey of discovery and greater understanding must continue, and it may eventually lead us to this conclusion. But not now.

3: High probability. How can we talk about probability when n = 1?

4: Universality. We can hypothesize the existence of other universes, yes, but if we have no way to observe or interact with them, how can we call this endeavor science? Furthermore, explaining the existence of multiple universes seems even more problematic that explaining the existence of a single universe—ours.

5: Cosmological Natural Selection. We do not know that black holes can create other universes, or that universes that contain life are more likely to have laws of physics that allow an abundance of black holes

First image of a black hole by the Event Horizon Telescope. The object M87* is located at the heart of galaxy Messier 87, about 54 million light years distant. The mass of this supermassive black hole is estimated at 6.5 billion solar masses.

6. Purpose of Design. The presupposition of design is not evidence of design. It is possible that scientific evidence of a creator or designer might be found in nature—such as an encoded message evincing purposeful intelligence in DNA or the cosmic microwave background—but to date no such evidence has been found. Even if evidence of a creator is forthcoming, how do we explain the existence of the creator?

I would now like to suggest a seventh option (possibly a variant of Ellis’s Option 1 Random Chance or Option 2 Necessity).

7. Indeterminate Due to Insufficient Intelligence. It is at least possible that there are aspects of reality and our origins that may be beyond what humans are currently capable of understanding. For some understanding of how this might be possible, we need look no further than the primates we are most closely related to, and other mammals. Is a chimpanzee self-aware? Can non-humans experience puzzlement? Are animals aware of their own mortality? Even if the answer to all these questions is “yes”1, there are clearly many things humans can do that no other animal is capable of. Why stop at humans? Isn’t it reasonable to assume that there is much that humans are cognitively incapable of?

Why do we humans develop remarkable technologies and yet fail dismally to eradicate poverty, war, and other violence? Why does the world have so many religions if they are not all imperfect and very human attempts to imbue our lives with meaning?

What is consciousness? Will we ever understand it? Can we extrapolate from our current intellectual capabilities to a complete understanding of our origins and the origins of the universe, or is something more needed that we currently cannot even envision?

“Sometimes attaining the deepest familiarity with a question is our best substitute for actually having the answer.” —Brian Greene, The Elegant Universe

“To ask what happens before the Big Bang is a bit like asking what happens on the surface of the earth one mile north of the North Pole. It’s a meaningless question.” —Stephen Hawking, Interview with Timothy Ferris, Pasadena, 1985

1 For more on the topic of the emotional and cognitive similarities between animals and humans, see “Mama’s Last Hug: Animal Emotions and What They Tell Us about Ourselves” by primatologist Frans de Waal, W. W. Norton & Company (2019). https://www.amazon.com/dp/B07DP6MM92 .

References
G.F.R. Ellis, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

The Laws of Physics and the Existence of Life

George F. R. Ellis writes in Issues in the Philosophy of Cosmology:

The first requirement is the existence of laws of physics that guarantee the kind of regularities that can underlie the existence of life.  These laws as we know them are based on variational and symmetry principles; we do not know if other kinds of laws could produce complexity.  If the laws are in broad terms what we presently take them to be, the following inter alia need to be right, for life of the general kind we know to exist:

  • Quantization that stabilizes matter and allows chemistry to exist through the Pauli exclusion principle.

  • The neutron-proton mass differential must be highly constrained.  If the neutron mass were just a little less than it is, proton decay could have taken place so that by now no atoms would be left at all.

  • Electron-proton charge equality is required to prevent massive electrostatic forces overwhelming the weaker electromagnetic forces that govern chemistry.

  • The strong nuclear force must be strong enough that stable nuclei exist; indeed complex matter exists only if the properties of the nuclear strong force lies in a tightly constrained domain relative to the electromagnetic force.

  • The chemistry on which the human body depends involves intricate folding and bonding patterns that would be destroyed if the fine structure constant (which controls the nature of chemical bonding) were a little bit different.

  • The number D of large spatial dimensions must be just 3 for complexity to exist.

It should not be too surprising that we find ourselves in a universe whose laws of physics are conducive to the existence of semi-intelligent life.  After all, we are here.  What we do not know—and will probably never know: Is this the only universe that exists?  This is an important question, because if there are many universes with different laws of physics, our existence in one of them may be inevitable.  If, on the other hand, this is the only universe, then the fantastic claims of the theists, or at least the deists, become more plausible.

You may wonder why I call the human race semi-intelligent.  Rest assured, I am not being sarcastic or sardonic.  I say “semi-intelligent” to call attention to humanity’s remarkable technological and scientific achievements while also noting our incredible ineptness at eradicating war, violence, greed, and poverty from the world.  What is wrong with us?

References
G.F.R. Ellis, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Les Misérables

There have been many film adaptations of Victor Hugo’s timeless novel, Les Misérables, but after watching the 1935 film starring Fredric March and Charles Laughton last night, I am in no rush to see any of the others. It is, quite simply, perfect.

This movie says more in one hour and forty-eight minutes than most other movies (especially more recent ones) say in two or three hours. A riveting tale of unjust laws, poverty, inhumanity, cruelty, compassion, love, mercy, doubt, and morality, this is one of the most moving and inspiring movies I have ever seen. And just as relevant for us to today as it was in 1935 and when Victor Hugo wrote the book, first published in 1862.

We need movies like this to remind us (and in such complex and jaded times as these we do need constant reminding) that idealism can help each of us navigate through life, and—no matter what burdens we bear—to make the world a better place. Not a single minute in this movie is wasted, so artfully is each and every scene of the movie constructed. If you tire of (and are horrified by) the seemingly endless stream of dystopian prognostications in recent years, this movie is the perfect antidote. There is an alternative to a ruined world, and that change begins with you and me right now.

https://dvd.netflix.com/Movie/Les-Miserables/70073445

https://www.amazon.com/Miserables-Richard-Boleslawski/dp/B076LJ6Y7V/

All of the film adaptations of Les Misérables, including this one, have a number of departures from the original novel by Victor Hugo. Behind every great movie there is usually an even greater book, and I have been remiss in never having read Hugo’s classic. That deficiency will be rectified soon.

Lost in Math: A Book Review

I recently finished reading a thought-provoking book by theoretical physicist Sabine Hossenfelder, Lost in Math: How Beauty Leads Physics Astray. Hossenfelder writes in an engaging and accessible style, and I hope you will enjoy reading this book as much as I did. Do we have a crisis in physics and cosmology? You be the judge. She presents convincing arguments.

The basic premise of Hossenfelder’s book is that when theoretical physicists and cosmologists lack empirical data to validate their theories, they have to rely on other approaches—”beauty”, “symmetry”, “simplicity”, “naturalness“, “elegance”—mathematics. Just because these approaches have been remarkably successful in the past is no guarantee they will lead to further progress.

One structural element that contributes to the book’s appeal is Hossenfelder’s interviews with prominent theoretical physicists and cosmologists: Gian Francesco Giudice, Michael Krämer, Gordon Kane, Keith Olive, Nima Arkani-Hamed, Steven Weinberg, Chad Orzel, Frank Wilczek, Garrett Lisi, Joseph Polchinski, Xiao-Gang Wen, Katie Mack, George Ellis, and Doyne Farmer. And, throughout the book, she quotes many other physicists, past and present, as well. This is a well-researched book by an expert in the field.

I also like her “In Brief” summaries of key points at the end of each chapter. And her occasional self-deprecating, brief, soliloquies, which I find reassuring. This book is never about the care and feeding of the author’s ego, but rather giving voice to largely unspoken fears that theoretical physics is stagnating. And an academic environment hell-bent on preserving the status quo isn’t helping matters, either.

Anthropic Principle

Do we live in a universe fine-tuned for life? If so, is it the only possible universe that would support life? Recent work indicates that there may be more than one set of parameters that could lead to a life-supporting universe.

Beauty is in the Eye of the Beholder

Is our sense of what is “beautiful” a reliable guide to gaining a deeper understanding of nature? Or does it sometimes lead us astray? We know from history that it does.

In the past, symmetries have been very useful. Past and present, they are considered beautiful

When we don’t have data to guide our theory development, aesthetic criteria are used. Caveat emptor.

Experiment and Theory

Traditionally, experiment and observation have driven theory. Now, increasingly, theory drives experiment, and the experiments are getting more difficult, more expensive, and more time consuming to do—if they can be done at all.

Inflation

The rapid expansion of the universe at the time of the Big Bang is known as cosmic inflation, or, simply, inflation. Though there is some evidence to support inflation, that evidence is not yet compelling.

Mathematics

Mathematics creates a logically consistent universe all its own. Some of it can actually be used to describe our physical universe. What math is the right math?

Math is very useful for describing nature, but is math itself “real”, or is it just a useful tool? This is an ancient question.

Memorable Quotations

“I went into physics because I don’t understand human behavior.” (p. 2)

“If a thousand people read a book, they read a thousand different books. But if a thousand people read an equation, they read the same equation.” (p. 9)

“In our search for new ideas, beauty plays many roles. It’s a guide, a reward, a motivation. It is also a systematic bias.” (p. 10)

On artificial intelligence: “Being unintuitive shouldn’t be held against a theory. Like lack of aesthetic appeal, it is a hurdle to progress. Maybe this one isn’t a hurdle we can overcome. Maybe we’re stuck in the foundations of physics because we’ve reached the limits of what humans can comprehend. Maybe it’s time to pass the torch.” (p. 132)

“The current organization of academia encourages scientists to join already dominant research programs and discourages any critique of one’s own research area.” (p. 170)

Multiverse

The idea that our universe of just one of a great many universes is presently the most controversial idea in physics.

Particles and Interactions

What is truly interesting is not the particles themselves, but the interactions between particles.

Philosophy

Physicists and astrophysicists are sloppy philosophers and could stand to benefit from a better understanding of the philosophical assumptions and implications of their work.

Physics isn’t Math

Sure, physics contains a lot of math, but that math has traditionally been well-grounded in observational science. Is math driving physics more than experiment and observation today?

Quantum Mechanics

Nobody really understands quantum mechanics. Everybody’s amazed but no one is happy. It works splendidly well. The quantum world is weird. Waves and particles don’t really exist, but everything (perhaps even the universe itself) is describable by a probabilistic “wave function” that has properties of both and yet is neither. Then there’s the many-worlds interpretation of quantum mechanics, and quantum entanglement

Science and the Scientific Method

In areas of physics where experiments are too difficult, expensive, or impossible to do, some physicists seem to be abandoning the scientific method as the central pillar of scientific inquiry. Faith in beauty, faith in mathematics, faith in naturalness, faith in symmetry. How is this any different than religion?

If scientists can evaluate a theory using other criteria than that theory’s ability to describe observation, how is that science?

Stagnation

Some areas of physics haven’t seen any new data for decades. In such an environment, theories can and do run amok.

Standard Model (of particle physics)

Ugly, contrived, ad hoc, baroque, overly flexible, unfinished, too many unexplained parameters. These are some of the words used to describe the standard model of particle physics. And, yet, the standard model describes the elementary particles we see in nature and their interactions with extraordinary exactitude.

String Theory

String theory dates back at least to the 1970s, and its origins go back to the 1940s. To date, there is still no experimental evidence to support it. String theory is not able to predict basic features of the standard model. That’s a problem.

Triple Threat: Crises in Physics, Astrophysics, and Cosmology?

Physics: Sure, the Large Hadron Collider (LHC) at CERN gave us the Higgs boson, but little else. No new physics. No supersymmetry particles. Embarrassments like the diphoton anomaly. Do we need a bigger collider? Perhaps. Do we need new ideas? Likely.

Astrophysics: We’ve spent decades trying to understand what dark matter is, to no avail. No dark matter particles have been found.

Cosmology: We have no testable idea as to what dark energy is. Plenty of theories, though.


See Hossenfelder’s recent comments on the LHC and dark matter in her op-ed, “The Uncertain Future of Particle Physics” in the January 23, 2019 issue of The New York Times.


The book concludes with three appendices:

  • Appendix A: The Standard Model Particles
  • Appendix B: The Trouble with Naturalness
  • Appendix C: What You Can Do To Help

Hossenfelder gives some excellent practical advice in Appendix C. This appendix is divided into three sections of action items:

  • As a scientist
  • As a higher ed administrator, science policy maker, journal editor, or representative of a funding body
  • As a science writer or member of the public

I’m really glad she wrote this book. As an insider, it takes courage to criticize the status quo.

References
Hossenfelder, S., Lost in Math: How Beauty Leads Physics Astray, Basic Books, New York (2018).
Hossenfelder, Sabine. “The Uncertain Future of Particle Physics.” The New York Times 23 Jan 2019. https://www.nytimes.com/2019/01/23/opinion/particle-physics-large-hadron-collider.html.

Pet Peeves

Here is a list of 10 irritations, in no particular order, that make me feel like an alien on my own planet.

  1. High color temperature headlights – Traditional automotive headlights have a yellowish-white color temperature of 3200K. Xenon headlights emit a bluish-white light around 4500K. LED lights are even bluer at around 6000K. These new “blue” headlights make me want to give up night driving altogether. They are too glary and too bright for oncoming traffic. Add in the same for so-called “fog” lights, and the result is often blinding for other drivers.
  2. High color temperature LED lights – While we’re on the topic of lighting, most indoor and outdoor LED lighting should have a color temperature between 2700K and 3000K. This provides a soothing yellow-white light instead of the garish and glary blue-white LED lights in common use today with a color temperature of 4000K or even higher.
  3. Dusk-to-dawn lighting – With the availability of modern light sources, control, and dimming technologies, most outdoor lighting does not need be on or running at full brightness all night long.
  4. Television advertisements – I don’t know how anyone can stand to watch television because there are so many advertisements. I’ve given up watching anything that has advertisement propaganda embedded within the program.
  5. Dystopian movies and television programs – Why would anyone find a dystopian portrayal of the future entertaining or even desirable? I find it utterly horrifying and we should do everything possible to make sure such a future never occurs. Furthermore, I find the amount of violence and aggression in movies and television appalling. This is entertainment? No thanks, I’ve got better things to do with my time.
  6. TV Screens in Restaurants – When I’m dining at a restaurant, just about the last thing I want to see is the distraction of one or more television screens. I’m there to enjoy the food and the company I’m with and screens of any kind are intrusive.
  7. Overuse of smartphones – So many people seem addicted to their smartphones. I don’t generally use one and get along just fine. As much as I use computers in my everyday life, I don’t want one with me everywhere I go. I am really thankful I grew up before personal computers and smartphones existed. Gives one a different perspective.
  8. Sports – I have absolutely no interest in sports. Physical fitness and healthful living, yes, but sports seems like a big waste of time. I don’t see how so many folks can get so excited about something that does absolutely nothing to make the world a better place.
  9. Hunting – I don’t see how anyone can derive pleasure out of depriving another animal of its life. It’s just sick. It is one thing to kill an animal if it is necessary for survival, or self-defense, but for sport it is disgusting. For necessary animal population control, why not use high-tech science-based birth control methods instead?
  10. Pets – I love seeing animals in nature, but have no interest in owning or taking care of a domesticated animal. I much prefer solitude or the company of people. I’m too busy to have any time for a pet, anyway. Don’t like it when you visit someone and their dog or cat jumps on you or licks you. Yuck.