Perseid Outburst of 14 Aug 2021

The Perseid outburst of 14 Aug 2021 exceeded the regular peak!
(Meteor Radio Station Wickede, Germany, courtesy of Andreas Pietsch

The Earth passed through an unexpected filament from Comet 109P/Swift-Tuttle, causing a spectacular enhancement of the Perseids on Saturday morning August 14 beginning around 0700 UT and continuing at least until 0945 UT when morning twilight began interfering with our observations. This is some 35 hours after the traditional peak (filament was at solar longitude ~141.5˚, whereas the traditional peak is at 140.0˚ – 140.1˚). Paul Martsching and I were observing NE of Ames, Iowa and saw single-observer observed rates of 40 to 60+ meteors per hour for an extended period. Many were bright (0th and 1st magnitude, some brighter). Paul’s peak hourly rate was 64 Perseids during the hour 0845 – 0945 UT.

Visual Observed Hourly Rates from Story County, Iowa (Data from Paul Martsching)

The dip in the meteor counts around 0830 looks to be real, and appears to be corroborated by the radio meteor counts from Germany (shown at the top of this article). This could be due to a dip in the brighter meteor rate (but not the fainter ones we couldn’t see), or perhaps it was a dip in the overall rate as the Earth passed through two “strands” of the meteoroid filament.

The IMO website reports the following:

“CBET 5016 (Jenniskens, 2021) states the peak was reached on Aug. 14, 08h02m UT (solar longitude 141.474 ± 0.005 degrees (equinox J2000.0)), with maximum ZHR between 130 ± 20 (calculated from CAMS Texas and California networks) and 210 ± 20 (calculated by K. Miskotte (DMS) from Pierre Martin’s visual observations) in good agreement with values calculated by H. Ogawa of the International Project for Radio Meteor Observation from radio forward scatter meteor observations. According to Peter Jenniskens (MeteorNews (b)), this probable filament may have been crossed over the last years, especially in 2018 (ZHR ~ 25 at solar longitude 140.95°) and 2019 (ZHR ~ 30 at solar longitude 141.02°) .”

Paul Martsching kept a detailed visual record of the outburst. He writes, “Apparently the ZHR was around double what we actually saw. The brightness index indicates a lot of faint meteors.”

15-minute-interval counts (Paul Martsching)

Paul writes, “The rate went up to ~ 60/hour for nearly an hour; then fell back to ~ 40/hour for 45 minutes; then went back up to ~75/hour for 45 minutes; then seemed to be declining as morning twilight was interfering.”

Paul’s detailed log sheets are shown at the end of this article.

Meteor outbursts like this are rare, but they do occur from time to time. In the future, it would be nice if some of the automated meteor camera systems around the world could do some real-time processing in order to immediately alert visual observers of any outburst in progress, similar to what has often been done for auroral displays

Paul uses a talking clock and a steno pad to record the details of the meteors he sees, observing conditions, etc., without taking his eyes off the sky or needing to use a flashlight. He rolls a rubber band down the page to act as a guide for the pencil.

I have used a digital tape recorder with an external microphone that can be turned on and off for each event, and a talking clock. Unfortunately, I lost all that equipment in the Houston Memorial Day Weekend flood in 2015.

I am looking for a digital voice recorder that records the time each activation of the external microphone occurs. In other words, when I later play back each meteor description audio “snippet”, I want to be able to know exactly what the time was when the audio was recorded, thus eliminating the need for a talking clock. Does any such device exist?

A number of automated meteor cameras captured this outburst, but nothing can compare with seeing it visually under excellent conditions! I hope many others saw this event, but I suspect most visual observers did not go out, since it was after the predicted peak nights of Aug 11/12 and 12/13. A nice surprise, and on a weekend, too!

Perseids Ahoy!

Already early this week you will see an occasional Perseid meteor gracing the sky, but next weekend the real show begins.  The absolute peak of this year’s Perseids is favorable to observers in North America, and with no moonlight interference we are in for a real treat—provided you escape cloudy weather.  I highly recommend “going mobile” if the weather forecast 24-48 hours before the peak night indicates less than ideal conditions at your location.

The Perseids this year are expected to peak Sunday night August 12/13.   Highest observed rates will likely be between 2 a.m. and 4 a.m. Monday, August 13.  Here’s a synopsis of the 2018 Perseids.

Fri/Sat

Aug 10/11

respectable activity

Sat/Sun

Aug 11/12

strong activity

Sun/Mon

Aug 12/13

very strong activity

Mon/Tue

Aug 13/14

strong activity

Tue/Wed

Aug 14/15

respectable activity

Meteor Watcher’s Network

I’ve been a meteor watching enthusiast since at least the early 1980s.  I had the good fortune back then of getting to know Paul Martsching when we both lived in Ames, Iowa, and few people in the world have logged more hours in the name of meteor science than he.  We have been close friends ever since.

We’ve learned that here in the U.S. Midwest, for any given astronomical event you wish to observe, there is between a 2/3 and 3/4 chance that it will be clouded out—unless you are willing to travel.  Weather forecasting has gotten much better over the years, and nowadays you can vastly improve your chances of not missing that important astronomical event, such as the Perseid meteor shower in August or the Geminid meteor shower in December.

Paul and I have traveled from Ames, Iowa to Nebraska, South Dakota, North Dakota, Kansas, Missouri, and Illinois over the years to escape cloudy skies.  Just last year, we had to travel to north of Jamestown, North Dakota to see the Perseids, and this year it appears we will need to travel to southern Kansas, Oklahoma, or Arkansas to get a clear view of the Geminids.

Weather forecasts don’t begin to get really accurate until about 48 hours out, so we often have to decide at nearly the last minute where to travel.  Therein lies the problem.  Where can we find a safe observing spot to put down our lawn chairs where there are no terrestrial lights visible brighter than the brightest stars, and no objectionable skyglow from sources or cities over the horizon?  It is a tall challenge.

What we need to develop is a nationwide network of folks who know of good places to watch meteors.  This would include astronomy clubs, individual astronomy enthusiasts, managers of parks and other natural areas, rural land owners who would allow meteor watchers on their land, rural B&Bs, cabins, lodges, ranches, and so on.  Once you know where you need to go to get out from under the clouds, there would be someone you could call in that area of the country to make expeditious observing arrangements for that night or the following night.  And perhaps lodging as well, if available.

If you would like to work with me to build a meteor watcher’s network or have ideas to share, please post comments here or contact me directly.