Infinity

George F. R. Ellis weighs in on the concept of infinity in his excellent paper, Issues in the Philosophy of Cosmology, available on astro-ph at https://arxiv.org/abs/astro-ph/0602280. He writes:

9.3.2 Existence of Infinities

The nature of existence is significantly different if there is a finite amount of matter or objects in the universe, as opposed to there being an infinite quantity in existence. Some proposals claim there may be an infinite number of universes in a multiverse and many cosmological models have spatial sections that are infinite, implying an infinite number of particles, stars, and galaxies. However, infinity is quite different from a very large number! Following David Hilbert, one can suggest these unverifiable proposals cannot be true: the word “infinity” denotes a quantity or number that can never be attained, and so will never occur in physical reality.38 He states:

Our principal result is that the infinite is nowhere to be found in reality. It neither exists in nature nor provides a legitimate basis for rational thought . . . The role that remains for the infinite to play is solely that of an idea . . . which transcends all experience and which completes the concrete as a totality . . .

This suggests “infinity” cannot be arrived at, or realized, in a concrete physical setting; on the contrary, the concept itself implies its inability to be realized!

Thesis I2: The often claimed physical existence of infinities is questionable. The claimed existence of physically realized infinities in cosmology or multiverses raises problematic issues. One can suggest they are unphysical; in any case such claims are certainly unverifiable.

This applies in principle to both small and large scales in any single universe:

The existence of a physically existing spacetime continuum represented by a real (number) manifold at the micro-level contrasts with quantum gravity claims of a discrete spacetime structure at the Planck scale, which one might suppose was a generic aspect of fully non-linear quantum gravity theories. In terms of physical reality, this promises to get rid of the uncountable infinities the real line continuum engenders in all physical variables and fields40. There is no experiment that can prove there is a physical continuum in time or space; all we can do is test space-time structure on smaller and smaller scales, but we cannot approach the Planck scale.

Infinitely large space-sections at the macro-level raise problems as indicated by Hilbert, and leads to the infinite duplication of life and all events. We may assume space extends forever in Euclidean geometry and in many cosmological models, but we can never prove that any realised 3-space in the real universe continues in this way—it is an untestable concept, and the real spatial geometry of the universe is almost certainly not Euclidean. Thus Euclidean space is an abstraction that is probably not physically real. The infinities supposed in chaotic inflationary models derive from the presumption of pre-existing infinite Euclidean space sections, and there is no reason why those should necessarily exist. In the physical universe spatial infinities can be avoided by compact spatial sections, resulting either from positive spatial curvature, or from a choice of compact topologies in universes that have zero or negative spatial curvature. Machian considerations to do with the boundary conditions for physics suggest this is highly preferable; and if one invokes string theory as a fundamental basis for physics, the “dimensional democracy” suggests the three large spatial dimensions should also be compact, since the small (“compactified”) dimensions are all taken to be so. The best current data from CBR and other observations indeed suggest k = +1, implying closed space sections for the best-fit FL model.

The existence of an eternal universe implies that an infinite time actually exists, which has its own problems: if an event happens at any time t0, one needs an explanation as to why it did not occur before that time (as there was an infinite previous time available for it to occur); and Poincaré eternal return will be possible if the universe is truly cyclic. In any case it is not possible to prove that the universe as a whole, or even the part of the universe in which we live, is past infinite; observations cannot do so, and the physics required to guarantee this would happen (if initial conditions were right) is untestable. Even attempting to prove it is future infinite is problematic (we cannot for example guarantee the properties of the vacuum into the infinite future—it might decay into a state corresponding to a negative effective cosmological constant).

It applies to the possible nature of a multiverse. Specifying the geometry of a generic universe requires an infinite amount of information because the quantities necessary to do so are fields on spacetime, in general requiring specification at each point (or equivalently, an infinite number of Fourier coefficients): they will almost always not be algorithmically compressible. All possible values of all these components in all possible combinations will have to occur in a multiverse in which “all that can happen, does happen”. There are also an infinite number of topological possibilities. This greatly aggravates all the problems regarding infinity and the ensemble. Only in highly symmetric cases, like the FL solutions, does this data reduce to a finite number of parameters, each of which would have to occur in all possible values (which themselves are usually taken to span an infinite set, namely the entire real line). Many universes in the ensemble may themselves have infinite spatial extent and contain an infinite amount of matter, with all the problems that entails. To conceive of physical creation of an infinite set of universes (most requiring an infinite amount of information for their prescription, and many of which will themselves be spatially infinite) is at least an order of magnitude more difficult than specifying an existent infinitude of finitely specifiable objects.

One should note here particularly that problems arise in the multiverse context from the continuum of values assigned by classical theories to physical quantities. Suppose for example that we identify corresponding times in the models in an ensemble and then assume that all values of the density parameter and the cosmological constant occur at each spatial point at that time. Because these values lie in the real number continuum, this is a doubly uncountably infinite set of models. Assuming genuine physical existence of such an uncountable infinitude of universes is the antithesis of Occam’s razor. But on the other hand, if the set of realised models is either finite or countably infinite, then almost all possible models are not realised. And in any case this assumption is absurdly unprovable. We can’t observationally demonstrate a single other universe exists, let alone an infinitude. The concept of infinity is used with gay abandon in some multiverse discussions, without any concern either for the philosophical problems associated with this statement, or for its completely unverifiable character. It is an extravagant claim that should be treated with extreme caution.

38An intriguing further issue is the dual question: Does the quantity zero occur in physical reality? This is related to the idea of physical existence of nothingness, as contrasted with a vacuum. A vacuum is not nothing!

40To avoid infinities entirely would require that nothing whatever is a continuum in physical reality (since any continuum interval contains an infinite number of points). Doing without that, conceptually, would mean a complete rewrite of many things. Considering how to do so in a way compatible with observation is in my view a worthwhile project.


So, given this discussion of infinities, the answer to the doubly hypothetical question, “Can God make a rock so big he can’t pick it up?” is likely a “Yes”! – D.O.

The Beginning

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis D1: An initial singularity may or may not have occurred.
A start to the universe may have occurred a finite time ago, but a variety of alternatives are conceivable: eternal universes, or universes where time as we know it came into existence in one or another way.  We do not know which actually happened, although quantum gravity ideas suggest a singularity might be avoided.

If we imagine, for a moment, running the clock of the universe backwards to earlier and earlier times, its size gets smaller and its density gets larger until we reach a moment—even earlier than the putative inflationary era—when classical physics at the macroscopic level no longer applies and some (as yet unknown) quantum physics must apply to everything—even gravity.  Therein lies the problem, because if you run the clock backwards just 5.39 x 10-44 second from this time, you reach the purported moment of the Big Bang—the initial singularity.  But whoa (or perhaps woe)!  How can we say anything about the Big Bang—or even if it occurred at all—since the laws of known physics completely break down 5.39 x 10-44 second (the Planck time) after the Big Bang!  See the problem?

Perhaps the universe came into existence through a process analogous to radioactive decay where an alpha particle leaves a nucleus through quantum tunneling.  Perhaps our universe “tunneled” into existence from somewhere else, and thus our beginning isn’t really the beginning.  This is just one of many possibilities.

This is a key issue in terms of the nature of the universe: a space-time singularity is a dramatic affair, where the universe (space, time, matter) has a beginning and all of physics breaks down and so the ability to understand what happens on a scientific basis comes to an end. However eternal existence is also problematic, leading for instance to the idea of Poincaré’s eternal return: everything that ever happened will recur an infinite number of times in the future and has already occurred an infinite number of times in the past.  This is typical of the problems associated with the idea of infinity.  It is not clear in the end which is philosophically preferable: a singularity or eternal existence.  That decision will depend on what criteria of desirability one uses.

While infinity is a highly useful mathematical device, one can make a strong argument that infinities do not exist in the physical universe (or even multiverse).  Quantum physics already gives us a possible clue about the infinitely small: we appear not to be able to subdivide space or time any further than the Planck length (1.616 x 10-35 meter) or the Planck time (5.39 x 10-44 second).  We would not be able to distinguish between two points less than a Planck length apart, nor two moments in time less than a Planck time apart.  While harder to envision, might not there also be an upper limit to size?  And time?

Thesis D2: Testable physics cannot explain the initial state and hence specific nature of the universe.
A choice between different contingent possibilities has somehow occurred; the fundamental issue is what underlies this choice.  Why does the universe have one specific form rather than another, when other forms consistent with physical laws seem perfectly possible?  The reasons underlying the choice between different contingent possibilities for the universe (why one occurred rather than another) cannot be explored scientifically.  It is an issue to be examined through philosophy or metaphysics.

Metaphysics is the part of philosophy that deals with existence, space, time, cause and effect, and the like.  Metaphysics begins where physics necessarily ends due to observational limitations.

Did anything exist before the Big Bang?

Was there a Big Bang?

What are the physical properties of the very early universe, when energy densities existed that are far beyond our ability to recreate in the laboratory?

What lies beyond our particle horizon?

Are there other universes?

Why does anything exist at all?

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Liddle, A.R. 2015, An Introduction to Modern Cosmology, 3rd ed., Wiley, ISBN: 978-1-118-50214-3.