Theory and Observation

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis F1: Philosophical choices necessarily underly cosmological theory.
Some cosmologists tend to ignore the philosophical choices underlying their theories; but simplistic or unexamined philosophical standpoints are still philosophical standpoints!

Cosmology, and indeed all human inquiry, is based on (at least) two unproven (though certainly reasonable) assumptions:

  1. The Universe exists.
  2. The human mind is at least to some degree capable of perceiving and understanding the Universe.

Any cosmological theory will have additional foundational unproven assumptions.  These are called axioms.  Ellis admonishes us to at least be aware of them, and to admit to them.

8.1 Criteria for theories
As regards criteria for a good scientific theory, typical would be the following four areas of assessment: (1) Satisfactory structure: (a) internal consistency, (b) simplicity (Ockham’s razor), and (c) aesthetic appeal (‘beauty’ or ‘elegance’); (2) Intrinsic explanatory power: (a) logical tightness, (b) scope of the theory—the ability to unify otherwise separate phenomena, and (c) probability of the theory or model with respect to some well-defined measure; (3) Extrinsic explanatory power, or relatedness: (a) connectedness to the rest of science, (b) extendability—providing a basis for further development; (4) Observational and experimental support, in terms of (a) testability: the ability to make quantitative as well as qualitative predications that can be tested; and (b) confirmation: the extent to which the theory is supported by such tests as have been made.

As you can see, a theory is not an opinion.  It must be well-supported by facts.  It must be internally consistent.  It must have explanatory power.  The Russian physicist A. I. Kitaĭgorodskiĭ (1914-1985) put it succinctly: “A first-rate theory predicts; a second-rate theory forbids, and a
third-rate theory explains after the event.”  Einstein’s special and general relativity are spectacular examples of first-rate theories.  In over 100 years of increasingly rigorous and sophisticated experiments and observations, relativity has never been proven to be incorrect.

Ellis emphasizes the importance of observational and experimental support in any scientific theory.

It is particularly the latter that characterizes a scientific theory, in contrast to other types of theories claiming to explain features of the universe and why things happen as they do.  It should be noted that these criteria are philosophical in nature in that they themselves cannot be proven to be correct by any experiment.  Rather their choice is based on past experience combined with philosophical reflection.  One could attempt to formulate criteria for good criteria for scientific theories, but of course these too would need to be philosophically justified.  The enterprise will end in infinite regress unless it is ended at some stage by a simple acceptance of a specific set of criteria.

So, even our criteria about what makes a good scientific theory rest upon axioms that cannot be proven.  But unlike religion, scientific theories never posit the existence of any supernatural entity.

Thesis F3: Conflicts will inevitably arise in applying criteria for satisfactory cosmological theories.
The thrust of much recent development has been away from observational tests toward strongly theoretically based proposals, indeed sometimes almost discounting observational tests.  At present this is being corrected by a healthy move to detailed observational analysis of the consequences of the proposed theories, marking a maturity of the subject.  However because of all the limitations in terms of observations and testing, in the cosmological context we still have to rely heavily on other criteria, and some criteria that are important in most of science may not really make sense.

String theory? Cosmic inflation?  Multiverse? If a theory is currently neither testable nor directly supported by observations, is it science, or something else?

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Leave a Reply

Your email address will not be published. Required fields are marked *