Retrograde Asteroids and TNOs

Of the 793,918 asteroids and trans-Neptunian objects (TNOs) currently catalogued, only 98 are in retrograde orbits around the Sun. That’s just 0.01%.

By “retrograde” we mean that the object orbits the Sun in the opposite sense of all the major planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. From a vantage point above the north pole of the Earth, all of the major planets orbit in a counterclockwise direction around the Sun.

Source: https://community.dur.ac.uk/john.lucey/users/inner.html

But a retrograde object would be seen to orbit in a clockwise direction around the Sun, as is shown in the animation below for Jupiter retrograde co-orbital asteroid 514107 (2015 BZ509), with respect to Jupiter and its two “clouds” of trojan asteroids.

Source: https://www.sciencenews.org/article/asteroid-jupiters-orbit-goes-its-own-way

Of these 98 retrograde objects, only 14 have orbits well-enough determined to have received a minor planet number, and only one has yet received an official name (20461 Dioretsa).

Semimajor Axis (a) between…Number of Retrograde Minor Planets
Mars – Jupiter3
Jupiter – Saturn*20
Saturn – Uranus*15
Uranus – Neptune*20
TNOs40

*asteroids between the orbits of Jupiter and Neptune are often referred to as centaurs

At least some of these objects may be captured interstellar objects.

Let’s now take a look at some of these 98 retrograde objects in greater detail.

20461 Dioretsa
The first retrograde asteroid to be discovered was 20461 Dioretsa, in 1999. The only named retrograde asteroid to date, Dioretsa is an anadrome of the word “asteroid”. It is a centaur in a highly eccentric orbit (0.90), ranging between the orbits of Mars and Jupiter out to beyond the orbit of Neptune. Objects in cometlike orbits that show no evidence of cometary activity are often referred to as damocloids. Dioretsa is both a centaur and a damocloid. Its orbital inclination (relative to the ecliptic) is 160°, which is a 20° tilt from an anti-ecliptic orbit. It takes nearly 117 years to orbit the Sun once. It is a dark object with a reflectivity only around 3% and is estimated to be about 9 miles across.

2010 EQ169
This retrograde asteroid holds the distinction (at least temporarily) of being the most highly-inclined main-belt asteroid (91.6°), relative to the ecliptic plane. It is also the retrograde asteroid with the smallest semimajor axis (2.05 AU) and lowest orbital eccentricity (0.10). Unfortunately, it was discovered after the fact by analyzing past data from the Wide-field Infrared Survey Explorer (WISE) space telescope, and has not been seen since. We have only a three-day arc of 17 astrometric observations of 2010 EQ169 between March 7-9, 2010 from which to determine its orbit. Nominally, 2010 EQ169 orbits the Sun at nearly a right angle to the ecliptic plane once every 2.9 years, between the orbits of Mars and Jupiter. However, our knowledge of its orbit is extremely uncertain, as shown below, and it has been lost. Our only hope will be to back-calculate the positions of future asteroids discovered to these dates to see if it matches the WISE positions.

ElementValue1σ Uncertainty
Inclination (i)91.606°18.177°
Semimajor Axis (a)2.0518 AU2.2176
Orbital Eccentricity (e)0.101530.90213
Orbital Period (P)2.94y4.765

2013 BL76
This retrograde TNO has the largest known semi-major axis of any of the retrograde non-cometary objects: 966.4274 ± 2.2149 AU. In a highly eccentric cometlike orbit (e = 0.99135), its perihelion is in the realm of the centaurs between the orbits of Jupiter and Saturn (8.35 AU), and its aphelion is way out around 1,924 AU. It takes about 30,000 years to orbit the Sun. Its orbit is inclined 98.6° with respect to the ecliptic.

2013 LA2
This retrograde centaur is in an orbit closest to the ecliptic plane (i = 175.2°), tilted 4.8° with respect to the ecliptic. It orbits the Sun about once every 21 years between the orbits of Mars and Uranus.

2017 UX51
The distinction for this retrograde TNO is that it has the highest orbital eccentricity of any non-cometary solar system object (e = 0.9967). Or is it an old inactive comet? 2017 UX51 orbits the Sun every 7,419 ± 2,883 years as close in as between the orbits of Earth and Mars (perihelion q = 1.24 AU)—classifying it as an Amor object—out to far beyond the orbit of Neptune (aphelion Q = 759.54 ± 196.77 AU). Its orbital inclination is 108.2°.

343158 (2009 HC82)
An Apollo asteroid, 343158 is the only known retrograde near-Earth asteroid (NEA), with an orbital inclination of 154.4°. It orbits the Sun every 4.0 years, between 0.49 AU (almost as close in as the aphelion of Mercury) out to 4.57 AU (between the orbits of Mars and Jupiter).

References
Conover, E., 2017. Science News, 191, 9, 5.

JPL Small-Body Database Browser, https://ssd.jpl.nasa.gov/sbdb.cgi, retrieved 31 March 2019.

Kankiewicz, P., Włodarczyk, I., 2018. Planetary and Space Science, 154, 72-76.

Minor Planet Center, https://minorplanetcenter.net/iau/MPCORB.html, retrieved 28 March 2019.

Namouni F., Morais M. H. M., 2018. MNRAS, 477, L117.

Wiegert, P., Connors, M., Veillet, C., 2017. Nature, 543, 687–689.

Planets Without Satellites

It may be rare for terrestrial planets to be accompanied by satellites, especially large ones.  It is far too early for us to draw any conclusions about terrestrial exoplanets (as no terrestrial exoplanet exomoons have yet been detectable), but in our own solar system, only two planets have no satellites, and they are both terrestrial planets: Mercury and Venus.  Mars has two small satellites that are almost certainly captured asteroids from the adjacent asteroid belt rather than primordial moons, and that leaves only the Earth among the terrestrial planets to host a large satellite, though it, too, is almost certainly not primordial.  Only the giant planets (Jupiter, Saturn, Uranus, and Neptune) have large systems of satellites, at least some of which may have formed while the planet itself was forming.

Though neither Mercury nor Venus has any natural satellites, Venus is known to have at least four transient quasi-satellites, more generally referred to as co-orbitals.  They are:

322756 (2001 CK32)
Comes close to both Earth and Mercury in its eccentric orbit (e=0.38).
Wiki  JPL  Orrery

2002 VE68
Comes close to both Earth and Mercury in its eccentric orbit (e=0.41).
Wiki  JPL  Orrery

2012 XE133
Comes close to both Earth and Mercury in its eccentric orbit (e=0.43).
Wiki JPL Orrery

2013 ND15
Comes close to both Earth and Mercury in its very eccentric orbit (e=0.61), and is the only known trojan of Venus, currently residing near its L4 Lagrangian point.
Wiki JPL Orrery

2015 WZ12 is a possible fifth Venus co-orbital candidate.  Observations during the next favorable observing opportunity in November of this year will hopefully better determine its orbit and nature.

2015 WZ12
Possible Venus co-orbital.
Wiki JPL Orrery

There is concern that there may be many more Venus co-orbitals, as yet undiscovered (and challenging to discover) that pose risks as potentially hazardous asteroids (PHAs) to our planet.

There are no known Mercury co-orbitals.  If any do exist, they will be exceedingly difficult to detect since they will always be in the glare of the Sun as seen from Earth.

Asteroids orbiting interior to Mercury’s orbit (a < 0.387 AU) would be called vulcanoids.  I say “would be” because none have been discovered yet, though in all fairness, they will be extremely difficult to detect.

A spacecraft orbiting interior to Mercury’s orbit looking outward would be an ideal platform for detecting, inventorying, and characterizing all potentially hazardous asteroids (PHAs) that exist in the inner solar system. A surveillance telescope in a circular orbit 0.30 AU from the Sun would orbit the Sun every 60 days.

The Parker Solar Probe, scheduled to launch later this year, will orbit the Sun between 0.73 AU and an extraordinarily close 0.04 AU, though it will be looking towards the Sun, not away from it.  The Near-Earth Object Camera (NEOCam) is a proposed mission to look specifically for PHAs using an infrared telescope from a vantage point at the Sun-Earth L1 Lagrangian point.

References
de la Fuente Marcos, C., & de la Fuente Marcos, R. 2014, MNRAS, 439, 2970
de la Fuente Marcos, C., & de la Fuente Marcos, R. 2017, RNAAS, 1, 3
Sheppard, S., & Trujillo, C. 2009, Icarus, 202, 12