Nearest Neutron Star

So far as we know, RX J1856.5-3754 is the neutron star closest to our solar system.  This radio-quiet isolated neutron star can be found between 352 and 437 ly from our solar system, with its most likely distance being 401 ly.  Directionally, it is located within the constellation Corona Australis, near the topside of the CrA circlet, just below the constellation Sagittarius.  Its coordinates are:

α2000 = 18h 56m 35.11s, δ2000 = -37° 54′ 30.5″.

RX J1856.5-3754 was formed in a supernova explosion about 420,000 years ago.  Today, this tiny 1.5 M star about 15 miles across has a surface temperature of 1.6 million K and shines in visible light very feebly with an apparent visual magnitude of only 25.5.  Its surface is so hot that its thermal emission is brightest in the soft X-ray part of the electromagnetic spectrum; this is how it was discovered in 1992.

Like all neutron stars, RX J1856.5-3754 has a very intense surface magnetic field (B ≈ 1013 G) which causes the electromagnetic radiation leaving it to exhibit a strong linear polarization.  In the presence of such a strong magnetic field, the “empty” space through which the light travels behaves like a prism, linearly polarizing the outgoing light through a process known as vacuum birefringence.

An active area of neutron star research currently is a precise determination of their diameters.  We do not yet know whether the extremely dense central regions of these stars contain neutrons, or an exotic form of matter such as a quark soup, hyperons, a Bose-Einstein condensate, or something else.  Knowing the exact size and mass of a neutron star will allow us to infer what type of matter must exist in its interior.  The majority of neutron stars are pulsars with active magnetospheres that make it difficult for us to see down to the surface.  More “quiet” neutron stars such as RX J1856.5-3754 are the best candidates for precise size measurements of the neutron star itself.  An accuracy of at least ± 1 mile is needed to begin to distinguish between the various models.

References
Mignani, R.P., Testa V., González Caniulef, D., et al. 2017, MNRAS 465, 1, 1
Özel, F., Sky & Telescope, July 2017, pp. 16-21
Yoneyama, T., Hayashida, K., Nakajima, H., Inoue, S., Tsunemi, H. 2017
[https://arxiv.org/abs/1703.05995]

Milky Way Supernova Candidates

There is a supermassive binary star in our own Milky Way Galaxy that has the potential to create a super-supernova (hypernova?).  It could go off tomorrow—or a million years from now.  The star system’s name is Eta Carinae.  Currently 4th-magnitude and located some 7,500 ly away in the direction of the southern constellation Carina (“The Keel”), Eta Carinae consists of a 100-200 M star and a 30-80 M star in a highly-eccentric 5.54y orbit with the more massive star undergoing prodigious mass loss.  Eta Carinae never rises above the horizon unless you’re south of latitude 30° N.  So, if Eta Carina ever does go supernova while humans still walk the Earth, you’ll have to travel at least as far as southern Texas or southern Florida to see it.  And it will be an impressive sight, easily visible during the daylight hours.

Closer to home, there are seven prime candidates for the next relatively nearby supernova.  The nearest of these currently is IK Peg.  Keep in mind that over hundreds of thousands of years, stars move quite a lot, so what is close to us now will not necessarily be close to us when a supernova event finally does occur.

IK Pegasi, a binary system comprised of a white dwarf already near the Chandrasekhar limit, and a close-by soon-to-be-giant main-sequence star, lies just 147 to 155 ly away in the direction of the constellation Pegasus, the Winged Horse.  IK Peg appears to us visually as a 6th magnitude star located roughly ⅓ of the way from Delphinus to the Square of Pegasus.  As the giant star expands into the vicinity of the white dwarf, the white dwarf will accumulate enough material to put it over the Chandrasekhar limit, and a Type Ia supernova will ensue.

Spica (α Vir), located at a distance between 237 and 264 ly, is a massive binary system (10 M and 7M), with the two stars orbiting each other every four days.

Alpha Lupi (α Lup) is a massive star (~10 M) located between 454 and 476 ly from our solar system.

Antares (α Sco) is a massive star (~12 M, the supernova progenitor) orbited by another massive star (~7 M).  However, their orbital period is at least 1,200 years.  The Antares system lies between 473 and 667 ly from our solar system

Betelgeuse (α Ori) is a massive star (~12 M) between 500 and 900 ly away.  Incidentally, there is a lot of uncertainty about the distance to Betelgeuse, primarily because it’s angular size (44 mas) is an order of magnitude larger than its parallax (4.5 mas) (Harper et al. 2017).

Rigel (β Ori) is a massive star (~23 M) between 792 and 948 ly distant.

Gamma2 Velorum (γ2 Vel) is a binary system 1,013 to 1,245 ly distant containing two stars which will go supernova in the not-too-distant future.  The system consists of a 28.5 MO7.5 giant star and a 9.0 MWolf-Rayet star (the nearest, incidentally) orbiting each other every 78.5 days.  The Wolf-Rayet star will be the first to supernova, followed later by the O giant star.

Tomorrow—or a million years from now?  We have no way of accurately predicting.  But rest assured, in the unlikely event that any one of these stars goes supernova during our lifetimes, none will be close enough to harm us.  Instead, for a time, we will be treated to a object comparable to the Moon in brightness and visible both day and night.

References
Firestone, R.B., 2014, ApJ, 789, 29
Harper, G.M., Brown, A., Guinan, E.F., et al., 2017, AJ, 154, 11
Richardson, N.D., Russell, C.M.P., St-Jean, L., et al., 2017, MNRAS