Venus: Future Earth?

In terms of bulk properties, Venus is the most Earthlike planet in the solar system. The diameter of Venus is 95% of Earth’s diameter. The mass of Venus is 82% of Earth’s mass. It has a nearly identical composition.

But…the average surface temperature of Venus is 735 K (863˚ F) and the surface atmospheric pressure is 91 times greater than Earth’s—equivalent to the pressure 3,000 ft. below the ocean’s surface. The present atmosphere of Venus is composed of 96.5% carbon dioxide (CO2) and 3.5% nitrogen (N2), plus a number of trace elements and compounds.

Venus was not always so inhospitable. What happened?

The cratering record suggests that nearly all of Venus has been resurfaced within the last 300 – 800 Myr. Before that, Venus probably was much more hospitable, even habitable, perhaps. The Pioneer Venus large probe and infrared spectral observations from Earth of H2O and HDO (deuterated isotope of water) indicate that the deuterium-to-hydrogen ratio in the Venusian atmosphere is 120 – 157 times higher than in water on Earth, strongly suggesting that Venus was once much wetter than it is today and that it has lost much of the water it once had to space. (Hydrogen is lighter than deuterium and therefore more easily escapes to space.) In addition to deuterium abundance, measuring the isotopic abundance ratios of the noble gases krypton and xenon would help us better understand the water history of Venus. These cannot be measured remotely and requires at-Venus sampling.

Venus receives 1.92 times as much solar radiation as the Earth, and this was undoubtedly a catalyst for the runaway greenhouse effect that transformed the Venusian climate millions of years ago.

We know that CO2 is a potent greenhouse gas, but anything that increases the amount of water vapor (H2O) in the atmosphere leads to global warming as well. As do clouds.

Climate modeling shows us that that the hothouse on the surface of Venus today is due to CO2 (66.6%), the continual cloud cover (22.5%), and what little water vapor remains in the atmosphere (10.9%).

Interestingly, if all the CO2 and N2 in the Earth’s crust were somehow liberated into the atmosphere, our planet would have an atmosphere very similar to Venus.

Venus is the easiest planet to get to from Earth, requiring the least amount of rocket fuel. There is so much we still don’t understand about how Venus transformed into a hellish world, and we would be well-advised to learn more about Venus because it may inform us about Earth’s future as well.

Tessera terrain covers about 7% of the surface of Venus. These highly deformed landforms, perhaps unique in the solar system, may allow us to someday sample the only materials that existed prior to the great resurfacing event.

COLORIZED TOPOGRAPHIC DATA OVERLAID UPON FORTUNA TESSERA TERRAIN IMAGE
In this radar image, blue represents the lowest elevations, white the intermediate elevations, and red the highest elevations. Source: Emily Lakdawalla, https://www.planetary.org/blogs/emily-lakdawalla/2013/02071317-venus-tessera.html .

If living organisms ever developed on Venus, the only place they could still survive today is 30 miles or so above the surface where the atmospheric temperature and pressure are similar to the surface of the Earth.

Even four billion years ago, Venus may have been too close to the Sun for life to develop, but if it did, Venus probably remained habitable up to at least 715 Myr ago.

Now for the bad news. All main-sequence stars, including our Sun, slowly brighten as they age, and their habitable zones move outward from their original locations. Our brightening Sun will eventually render the Earth uninhabitable, certainly within the next two billion years, and our water could be lost to the atmosphere and then space within the next 13o million years, leading to a thermal runaway event and an environment similar to that of Venus. Human-induced climate change could make the Earth uninhabitable for humans and many other species long before that.

One indication that water is being lost to space and surface warming is occurring is water vapor in the stratosphere. The more water vapor that is in the stratosphere, the more water is being forever lost to space and the greater the surface warming. Careful and continuous monitoring of water vapor levels in the Earth’s stratosphere is important to our understanding of climate change on Earth.

To conclude, Arney and Kane write:

“Venus teaches us that habitability is not a static state that planets remain in throughout their entire lives. Habitability can be lost, and the runaway greenhouse is the final resting place of once watery worlds.”

References

Arney, G., & Kane, S. 2018, arXiv e-prints, arXiv: 1804.05889

Bézard, B., & de Bergh, C. 2007, J. Geophys. Res., 112, E04S07, doi: 10.1029/2006JE002794.

Ostberg, C., & Kane, S. R. 2019, arXiv e-prints,arXiv: 1909.07456

Sanjay S. Limaye, Rakesh Mogul, David J. Smith, Arif H. Ansari, Grzegorz P. Słowik, and Parag Vaishampayan. Astrobiology. Sep 2018.1181-1198. https://www.liebertpub.com/doi/10.1089/ast.2017.1783

Way, M.J. 2019, EPSC Abstracts, 13, EPSC-DPS2019-1846-1

Way, M. J., Del Genio, A. D., Kiang, N. Y., et al. 2016, Geophys. Res. Lett., 43, 8376

The Anthropic Question

George F. R. Ellis writes in Issues in the Philosophy of Cosmology:

9.1 Issue G: The anthropic question: Fine tuning for life
One of the most profound fundamental issues in cosmology is the Anthropic question: why does the Universe have the very special nature required in order that life can exist?  The point is that a great deal of “fine tuning” is required in order that life be possible.  There are many relationships embedded in physical laws that are not explained by physics, but are required for life to be possible; in particular various fundamental constants are highly constrained in their values if life as we know it is to exist:

Ellis goes on to quote Martin Rees.

A universe hospitable to life—what we might call a biophilic universe—has to be special in many ways … Many recipes would lead to stillborn universes with no atoms, no chemistry, and no planets; or to universes too short lived or too empty to evolve beyond sterile uniformity.

Physics does not tell us anything (yet) about why the fundamental constants and other parameters have the values they do.  These parameters include, for example, the speed of light, the Planck constant, the four fundamental forces and their relative strengths, the mass ratio of the proton and the electron, the fine-structure constant, the cosmological density parameter, Ωtot, relative to the critical density, and so on.  And, why are there four fundamental forces?  Why not five?  Or three?

Also, why do we live in a universe with three spatial dimensions and one time dimension?  Others are possible—even universes with two or more time dimensions.

But it appears that only three spatial dimensions and one time dimension is conducive to life (at least life as we know it), as shown in the diagram above (Whittle 2008).

In fact, altering almost any of the parameters would lead to a sterile universe and we could not exist.  Is the universe fine-tuned for our existence?

Let’s assume for the moment it is.  Where does that lead us?

  1. As our understanding of physics advances, we will eventually understand why these parameters must have the values that they do. -or-
  2. We will eventually learn that some of these parameters could have been different, and still support the existence of life. -or-
  3. God created the universe in such a way that life could exist -or-
  4. We’re overthinking the problem.  We live in a life-supporting universe, so of course we find the parameters are specially tuned to allow life. -or-
  5. There exist many universes with different parameters and we just happen to find ourselves in one that is conducive to life. (The multiverse idea.)

#4 is the anthropic explanation, but a deeper scientific understanding will occur if we find either #1, #2, or #5 to be true.  #3 is problematic for a couple of reasons.  First of all, how was God created?  Also, deism has a long history of explaining phenomena we don’t understand (“God of the gaps”), but in time we are able to understand each phenomenon in turn as science progresses.

The anthropic explanation itself is not controversial.  What is controversial is deciding to what degree fine tuning has occurred and how to explain it.

In recent years, the multiverse idea has become more popular because, for example, if there were a billion big bangs and therefore a billion different universes created, then it should not be at all surprising that we find ourselves in  one with just the right set of parameters to allow our existence.  However, there is one big problem with the multiverse idea.  Not only do we have no physical evidence that a multiverse exists, but we may never be able to obtain evidence that a multiverse exists, due to the cosmological horizon problem1.  If physical evidence of a multiverse is not forthcoming, then in that sense it is not any better than the deistic explanation.

To decide whether or not there is only one combination of parameters that can lead to life we need to rule out all the other combinations, and that is a tall order.  Recent work in this field suggests that there is more than one combination of parameters that could create a universe that is hospitable to life (Hossenfelder 2018).

Thinking now about why our universe is here at all, it seems there are just two possibilities:

(1)  Our universe has a supernatural origin.

(2)  Our universe has a natural origin.

If our universe has a supernatural origin, then what is the origin of the supernatural entity (e.g. God)?  If, on the other hand, our universe had a natural origin (e.g. something was created out of nothing), didn’t something have to exist (laws of physics or whatever) before the universe came into existence?  If so, what created those pre-conditions?

In either case, we are facing an infinite regression.  However, we could avoid the infinite regression by stating that something has to exist outside of time, that is to say, it has no beginning and no ending.  But isn’t this just replacing one infinity with another?

Perhaps there’s another possibility.  Just as a chimpanzee cannot possibly understand quantum mechanics, could it be that human intellect is also fundamentally limited?  Are the questions in the previous two paragraphs meaningless or nonsensical in the context of some higher intelligence?

1We appear to live in a universe that is finite but very much larger than the region that is visible to us now, or ever.

References
G.F.R. Ellis, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Sabine Hossenfelder, Lost in Math: How Beauty Leads Physics Astray (Basic Books, 2018).

M. J. Rees, Our Cosmic Habitat (Princeton and Oxford, 2003).

Mark Whittle, “Fine Tuning and Anthropic Arguments”, Lecture 34, Course No. 1830.  Cosmology: The History and Nature of Our Universe.  The Great Courses, 2008.  DVD.
[https://www.thegreatcourses.com/courses/cosmology-the-history-and-nature-of-our-universe.html]