Keith Bechtol at UW Space Place

We are so very fortunate here in southern Wisconsin to have evening public lectures the 2nd Tuesday every month of the year at the University of Wisconsin Space Place, expertly organized by Jim Lattis. On Tuesday, November 12th, Clif Cavanaugh (retired physics and astronomy professor at the UW in Richland Center) and I made the trek (as we often do) from Spring Green-Dodgeville to the Space Place in Madison. This month, we were treated to an excellent presentation by Keith Bechtol, an Observational Cosmologist in the Physics Department at UW-Madison. His topic was The Big Picture: Science with Astronomical Surveys. Keith is an early career scientist with a bright future. His presentation was outstanding.

I’d like to share with you some of the highlights.

Before the talk, which is mostly about the Large Synoptic Survey Telescope (LSST), currently under construction in Chile and expected to see first light in 2020, I asked Keith about whether LSST would be renamed the Vera Rubin Telescope as was announced at AAS 234 in St. Louis this past summer. As it turns out, Keith has been a vocal advocate for naming LSST after Vera Rubin, though no final decision has yet been made.

Before I get into notes from the talk, I wanted to share with you the definition of the word synoptic in case you are not familiar with that word. The Oxford English Dictionary defines the word synoptic as “furnishing a general view of some subject; spec. depicting or dealing with weather conditions over a large area at the same point in time.” But rather than the traditional meteorological definition, here we are referring to a wide-field survey of the entire night sky visible from Cerro Pachón in Chile, latitude 30˚ S.

Keith first talked about how astronomical imaging is currently advancing along two fronts. The first is high-resolution imaging, as recently illustrated with first image of the event horizon of a black hole from the Event Horizon Telescope, where an amazing resolution of around 25 microarcseconds was achieved.

In general, the larger the telescope aperture, the smaller the field of view.

The Hubble Space Telescope’s Ultra Deep Field is only 3.1 arcminutes square

A survey telescope, on the other hand, must be designed to cover a much larger area of the sky for each image.

Not only can a survey telescope detect “anything that changes” in the night sky, but it also allows us to probe the large-scale structure of our universe. Three still-mysterious entities that are known to affect this large-scale structure are dark energy, dark matter, and neutrinos. Keith indicates that “these names are placeholders for physics we don’t yet fully understand.”

Dark energy, which is responsible for driving galaxies apart at an accelerating rate, is unusual in that it maintains a constant density as the universe expands. And its density is very low.

Supernovae are a very useful tool to probe the dark-energy-induced accelerating expansion of the universe, but in any particular galaxy they are exceedingly rare, so by monitoring large areas of the sky (ideally, the entire sky), we can discover supernovae frequently.

The mass distribution of our universe subtly affects the alignment and shapes of distant galaxies through a phenomenon known as weak gravitational lensing. Understanding these distortions and correlations requires a statistical approach looking at many galaxies across large swaths of sky.

Closer to home, small galaxies that have come too close our Milky Way galaxy are pulled apart into stellar streams that require a “big picture” approach to discover and map. The dark matter distribution in our Milky Way galaxy plays an important role in shaping these stellar streams—our galaxy contains about ten times as much dark matter as normal matter.

With wide-field surveys, not only do we need to cover large areas of sky, but we also want to be able to see the faintest and most distant objects. That latter property is referred to as “going deeper”.

The LSST will provide a dramatic increase in light gathering power over previous survey instruments. The total number of photons collected by a survey instrument per unit time is known as the étendue, a French word, and it is the field of view (in square degrees) × the effective aperture (in m2) × the quantum efficiency (unitless fraction). The units of étendue are thus m2deg2. Note that the vertical axis in the graph below is logarithmic, so the LSST will have a significantly higher étendue than previous survey instruments.

The largest monolithic mirrors in the world are fabricated at the Steward Observatory Mirror Lab at the University of Arizona in Tucson. The largest mirrors that can be produced there are 8.4 meters, and LSST has one of them.

Remember the Yerkes Observatory 40-inch refractor, completed in 1897? It has held the record as the largest lens ever used in an astronomical telescope. Until now. A 61.8-inch lens (L-1) and a 47.2-inch (L-2) have been fabricated for use in the LSST camera.

L-1, the largest lens ever produced, is the front lens of the LSST camera

LSST will utilize a camera that is about the size of a car. It is the largest camera ever built for astronomy.

The LSST camera will produce 3.2 gigapixel images. You would need to cover about half a basketball court with 4K TV screens to display the image at full resolution.

An image will be produced every 15 seconds throughout the night, every clear night, and each patch of sky will be reimaged every three nights. That is a HUGE amount of data! ~10 Tb of data each night. Fiber optical cable will transport the data from Cerro Pachón to the National Center for Supercomputing Applications in Urbana, Illinois, where it will be prepared for immediate use and made publicly available to any interested researcher. The amount of data is so large that no one will be downloading raw data to their local computer. They will instead be logging in to the supercomputer and all processing of the data will be done there, using open source software packages.

There are many data processing challenges with LSST data needing to be solved. Airplane, satellite, and meteor trails will need to be carefully removed. Many images will be so densely packed with overlapping objects that special care will be needed separating the various objects.

One LSST slide that Keith presented showed “Solar System Objects: ~ 6 million” and that piqued my interest, given my ongoing research program of observing stellar occultations by asteroids and trans-Neptunian objects for IOTA. Currently, if you endeavor to observe the highest probability occultation events from a fixed observatory location each night, you will be lucky to record one positive event for every ten negative events (no occultation). The reason for this is that our knowledge of the orbital elements of the small bodies of the solar system is not yet precise enough to accurately predict where stellar occultation events will occur. Gaia DR3, scheduled for the latter half of 2021, should significantly improve the precision of small body orbits, and even though LSST does not have nearly the astrometric precision of Gaia, it will provide many valuable astrometric data points over time that can be used to refine orbital elements. Moreover, it is expected that LSST will discover—with its much larger aperture than Gaia—at least 10 times the number of asteroids and trans-Neptunian objects that are currently known.

During the question and answer period after the lecture, I asked Keith what effect the gigantic increase in the number of satellites in Earth orbit will have on LSST operations (global broadband internet services provided by organizations like SpaceX with its Starlink constellation). He stated that this definitely presents a data processing challenge that they are still working on.

An earlier version of Keith’s presentation can be found here. All images in this article except the first (OED) come from Keith’s presentation and have not been altered in any way.

References

Bechtol, Keith, “The Big Picture: Science with Astronomical Surveys” (lecture, University of Wisconsin Space Place, Madison, November 12, 2019).

Bechtol, Ellen & Keith, “The Big Picture: Science and Public Outreach with Astronomical Surveys” (lecture, Wednesday Night at the Lab, University of Wisconsin, Madison, April 17, 2019; University Place, Corporation for Public Broadcasting, PBS Wisconsin).

Jones, R. L., Jurić, M., & Ivezić, Ž. 2016, in IAU Symposium, Vol. 318, Asteroids: New Observations, New Models, ed. S. R. Chesley, A. Morbidelli, R. Jedicke, & D. Farnocchia, 282–292. https://arxiv.org/abs/1511.03199 .

Oxford English Dictionary Online, accessed November 17, 2019, https://www.oed.com/ .

Obsolete But Still Relevant

Under the direction of Friedrich Argelander (1799-1875), astronomers at the Bonn Observatory spent seven years (1852 to 1859) measuring the positions and magnitudes of roughly 324,000 stars, one star at a time.  This phenomenal work resulted in the Bonner Durchmusterung (BD) catalog and atlas, which included stars down to approximately magnitude 9.5 and is a tribute to the foresight of Argelander and the diligence of his small staff.  The Bonner Durchmusterung was the last star catalog to be produced without the benefit of photography, and it is certainly the most comprehensive of the pre-photographic atlases.

Back in 2007, Alan MacRobert stated (Sky & Telescope, July 2007, p. 59), “Someday machines will measure the brightness of every star in the sky to some amazingly deep magnitude many times a night, and blind software will compile and analyze light curves automatically.”  No doubt, he is correct, but he does add that this has not happened yet, despite years of pregnant expectations.

But we are getting closer to that day, with the Large Synoptic Survey Telescope (LSST) scheduled to come online in 2022 and many other similar survey instruments in the pipeline or already operational.  That is one reason as an amateur astronomer with limited resources (including time) I focus on observing the occultation of stars by asteroids and trans-Neptunian objects.  It is one of the few areas where an amateur observational astronomer can provide location-dependent observations.  You are either in the shadow path or you are not.  Though truth be told I would rather be studying exoplanets, we can only do what we have the resources to do—regardless of talent or potential.

History is full of examples of skills and techniques made obsolete almost overnight by new technologies (or a different point of view), but what is seldom recorded is the sense of desolation and indeed mortality experienced by those unfortunate enough to live to see that their highly-developed skills are no longer wanted or needed.  As my meteor-watching friend Paul Martsching has said, “It is good we don’t live forever: we are a product of our times.”  He realizes full well that someday automated systems will count every meteor above the horizon far better and more completely than any visual meteor observer can, but for many years he has carefully recorded meteor activity many nights a year.  The data he collects will always be relevant as part of the historical record, at least, and the sheer joy of being out under the stars and away from light pollution can never be replaced by a computer.  To us, astronomy is something much deeper than what can be delivered through a computer screen.

We are a product of our times, and as we approach the twilight (or autumn) of our lives we don’t necessarily feel compelled to embrace every new thing that comes along.  Peace.

From the standpoint of daily life, however, there is one thing we do know: that we are here for the sake of each other—above all for those upon whose smile and well-being our own happiness depends, and also for the countless unknown souls with whose fate we are connected by a bond of sympathy.  Many times a day I realize how much my own outer and inner life is built upon the labors of my fellow men, both living and dead, and how earnestly I must exert myself in order to give in return as much as I have received. – Albert Einstein (1879-1955)