OBAFGKMLTY

The spectral type classification scheme for stars is, among other things, a temperature sequence. A helpful mnemonic for remembering the sequence is Oh, Be A Fine Girl (Guy) Kiss Me Like This, Yes! The O stars have the highest surface temperatures, up to 56,000 K (100,000° F), while the Y infrared dwarfs (brown dwarfs) have surface temperatures as cool as 250 K (-10° F).

Here are the brightest representatives of each of these spectra classes readily visible from the northern hemisphere. Apparent visual magnitude (V-band) is given unless otherwise noted.

Two Paths to Low Mass

A brown dwarf (also known as an infrared dwarf) is, in a way, a failed star.  Early in their lives, these ultra-low-mass stars (13+ MJ) fuse deuterium into helium-3, and in the highest mass brown dwarfs (65-80 MJ) lithium is depleted into helium-4, as shown below.

But the mass is too low for fusion to be sustained (the temperature and pressure in the core aren’t high enough), and soon the fusion reactions peter out.  Then, only the slow process of thermal contraction provides a source of heat for the wanna-be star.

There is another, very different, path to a brown dwarf star.  A cataclysmic variable usually consists of a white dwarf and a normal star in a close binary system.  As material is pulled off the “donor star” (as the normal star is called) onto the white dwarf, the donor star can eventually lose so much mass that it can no longer sustain fusion in its core, and it becomes a brown dwarf star.

When we see a white dwarf / brown dwarf binary system, how do we know that the brown dwarf wasn’t always a brown dwarf?  Strong X-ray and ultraviolet emission provides evidence of an accretion disk around the white dwarf, and astronomers can calculate the rate of mass transfer between the two stars.  Often, this is billions of tons per second!  Using other techniques to estimate the age of the binary system, we sometimes find that the donor star must have started out as a normal star with much more mass than we see today.

WISEA J045921.21+154059.2: A Bright, Nearby Infrared Dwarf

Are you up for an observing challenge?  If you have a telescope equipped with a CCD camera and an infrared filter, you might be able to detect the brightest known L-type infrared dwarf star WISEA J045921.21+154059.2.  (This author prefers to use the term “infrared dwarf” rather than the more popular caconym brown dwarf.)

WISEA J045921.21+154059.2, also known as WISE J045921.20+154059.4 and 2MASS J04592088+1541054, is a high-proper-motion star located not far from Aldebaran in the constellation Taurus at α2000 = 4h 59m 20.89s, δ2000 = +15° 41′ 05.42″.  This cool star has a spectral classification of sdL0.  Though its parallax has not yet been measured, its high proper motion may indicate it’s a star just a few light years away.  The “sd” classification on the L0 spectral type indicates that it is a subdwarf star—underluminous in comparison with a “normal” L0 star.

Infrared dwarfs—as their name implies—radiate mostly in the infrared portion of the spectrum rather than at visible wavelengths.  You can see this in the apparent magnitudes listed below.  Remember, the lower the number the brighter the star is at that wavelength/passband.

g = 20.08 ± 0.03
(PS1 g magnitude: center wavelength 4866 Å; green light)

r = 18.70 ± 0.01
(PS1 r magnitude: center wavelength 6215 Å; red light)

i = 17.14 ± 0.01
(PS1 i magnitude: center wavelength 7545 Å; infrared)

z = 16.49 ± 0.01
(PS1 z magnitude: center wavelength 8679 Å; infrared)

y = 16.19 ± 0.01
(PS1 y magnitude: center wavelength 9633 Å; infrared)

J = 14.96 ± 0.03
(2MASS J magnitude: center wavelength 12,350 Å; infrared)

H = 14.61 ± 0.06
(2MASS H magnitude: center wavelength 16,620 Å; infrared)

Ks = 14.30 ± 0.06
(2MASS Ks magnitude: center wavelength 21,590 Å; infrared)

W1 = 14.09 ± 0.03
(AllWISE W1 magnitude: center wavelength 34,000 Å; infrared)

W2 = 13.85 ± 0.04
(AllWISE W2 magnitude: center wavelength 46,000 Å; infrared)

W3 = 11.86 or brighter
(AllWISE W3 magnitude: center wavelength 120,000 Å; infrared)

W4 = 8.99 or brighter
(AllWISE W4 magnitude: center wavelength 230,000 Å; infrared)

References
Best, W. M. J., Magnier, E. A., et al. 2017, arXiv:1701.00490 [astro-ph.SR]