Earth’s Changing Climate

The Intergovernmental Panel on Climate Change (IPCC) issued an important special report yesterday on climate change.  In the accompanying press release, they state the following:

    • Limiting global warming to 1.5°C would require “rapid and far-reaching” transitions in land, energy, industry, buildings, transport, and cities.  Global net human-caused emissions of carbon dioxide (CO2) would need to fall by about 45 percent from 2010 levels by 2030, reaching ‘net zero’ around 2050. This  means that any remaining emissions would need to be balanced by removing CO2 from the air.
    • This report will be a key scientific input into the Katowice Climate Change Conference in Poland in December, when governments review the Paris Agreement to tackle climate change.
    • We are already seeing the consequences of 1°C of global warming through more extreme weather, rising sea levels and diminishing Arctic sea ice.
    • Warming of 1.5ºC or higher increases the risk associated with long-lasting or irreversible changes, such as the loss of some ecosystems.

In the Summary for Policymakers, the IPCC states that “warming from anthropogenic emissions from the pre-industrial period to the present will persist for centuries to millennia and will continue to cause further long-term changes in the climate system, such as sea level rise, with associated impacts.”

This last point is very important.  Even if humanity disappeared from the face of the Earth tomorrow, it will take centuries to millennia for greenhouse gases in our atmosphere to return to pre-industrial levels.

Richard Wolfson, Professor of Physics at Middlebury College in Middlebury, Vermont, states in his excellent 2007 video course, “Earth’s Changing Climate” (The Great Courses, Course No. 1219),

The atmosphere, living things, soils, and surface ocean waters all represent short-term carbon reservoirs.  Cycling among these reservoirs occurs mostly on relatively short time scales.  In particular, a typical carbon dioxide molecule remains in the atmosphere only about five years.  But the rapid cycling of carbon through the atmosphere-biosphere-surface ocean system means that any carbon added to that system remains there much longer—for hundreds to thousands of years. Because the added carbon cycles through the atmosphere, the level of atmospheric carbon dioxide goes up and stays up for a long time.

We’ve known about this aspect of climate change for a long time.  It is based on solid science.  Any action we take now, either positive or negative, will affect Earth’s environment many generations into the future.

I know of no better introduction to climate science than Richard Wolfson’s video course.  Even though it was produced 11 years ago, it is still completely relevant.

Earth’s Changing Climate, The Great Courses, Course No. 1219

Metallicity

No, it’s not the name of a rock band. Astronomers (unlike everybody else) consider all elements besides hydrogen and helium to be metals. For example, our Sun has a metallicity of at least 2% by mass (Vagnozzi 2016). That means as much as 98% of the mass of the Sun is hydrogen (~73%) and helium (~25%), with 2% being everything else.

Traditionally, elemental abundances in the Sun have been measured using spectroscopy of the Sun’s photosphere.  In principle, stronger spectral lines (usually absorption) of an element indicate a greater abundance of that element, but deriving the correct proportions from the cacophony of spectral lines is challenging.

A more direct approach to measuring the Sun’s elemental abundances is analyzing the composition of the solar wind, though the material blown away from the surface of the Sun that we measure near Earth’s orbit may be somewhat different from the actual photospheric composition.  The solar wind appears to best reflect the composition of the Sun’s photosphere in the solar polar regions near solar minimum.  The Ulysses spacecraft made solar wind measurements above both the Sun’s north and south polar regions during the 1994-1995 solar minimum.  Analysis of these Ulysses data indicate the most abundant elements are (after hydrogen and helium, in order of abundance): oxygen, carbon, nitrogen, magnesium, silicon, neon, iron, and sulfur—though one analysis of the data shows that neon is the third most abundant element (after carbon).

The elephant in the room is, of course, are the photospheric abundances we measure using spectroscopy or the collection of solar wind particles indicative of the Sun’s composition as a whole?  As it turns out, we do have ways to probe the interior of the Sun.  Both helioseismology and the flux of neutrinos emanating from the Sun are sensitive to metal abundances within the Sun.  Helioseismology is the study of the propagation of acoustic pressure waves (p-waves) within the Sun.  Neutrino flux is devilishly hard to measure since neutrinos so seldom interact with the matter in our instruments.  Our studies of the interior of the Sun (except for sophisticated computer models) are still in their infancy.

You might imagine that if measuring the metallicity of the Sun in our own front yard is this difficult, then measuring it for other stars presents an even more formidable challenge.

In practice, metallicity is usually expressed as the abundance of iron relative to hydrogen.  Even though iron is only the seventh most abundant metal (in the Sun, at least), it has 26 electrons, leading to the formation of many spectral lines corresponding to the various ionization states within a wide range of temperature and pressure regimes.  Of the metals having a higher abundance than iron, silicon has the largest number of electrons, only 14, and it does not form nearly as many spectral lines in the visible part of the spectrum as does iron.  Thus defined, the metallicity of the Sun [Fe/H] = 0.00 by definition.  It is a logarithmic scale: [Fe/H] = -1.0 indicates an abundance of iron relative to hydrogen just 1/10 that of the Sun.  [Fe/H] = +1.0 indicates an abundance of iron relative to hydrogen 10 times that of the Sun.

The relationship between stellar metallicity and the existence and nature of exoplanets is an active topic of research.  It is complicated by the fact that we can never say for certain that a star does not have planets, since our observational techniques are strongly biased towards detecting planets with an orbital plane near our line of sight to the star.

References
Vagnozzi, S. 2016, 51st Recontres de Moriond, Cosmology, At La Thuile