Homogeneity and Isotropy

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

4.2.2 Indirect determination: justifying a Friedmann-Lemaître geometry
Considered on a large enough angular scale, astronomical observations are very nearly isotropic about us, both as regards source observations and background radiation; indeed the latter is spectacularly isotropic, better than one part in 104 after a dipole anisotropy, understood as resulting from our motion relative to the rest frame of the universe, has been removed.

No matter what direction we look, the universe looks statistically the same at a scale of hundreds of millions of light years.  We call this property isotropy.  Case in point: when compared one to the other, the Hubble Deep Fields look remarkably similar, even though they are about 135° apart in the sky.

Hubble eXtreme Deep Field in the constellation Fornax
Hubble Deep Field in the constellation Ursa Major

Taken individually, both of these deep fields also exhibit homogeneity, that is, they generally show a fairly uniform distribution of galaxies across the field.

Does the dipole anisotropy in the cosmic background radiation (CBR), due to our motion with respect the rest frame of the universe, indicate an absolute frame of reference?  Not at all.  Though the rest frame of the universe is the preferred frame for cosmology, it is not a particularly good frame of reference to use, for example, in describing the motion of the planets in our solar system.  The laws of physics are the same in all inertial (unaccelerated) reference frames, so none of them can be “special”—or absolute.  An absolute frame of reference would be one in which the laws of physics would be different—indeed simpler—but no such reference frame exists.  And any non-inertial (accelerated) reference frame indicates there is an external force outside the system acting on the system, so it can never be used as an absolute frame of reference.

We’re moving toward Leo and away from Aquarius, relative to the cosmic background radiation
Top: CBR with nothing subtracted; Middle: CBR with dipole anisotropy subtracted; Bottom: CBR with both dipole anisotropy and galactic emission subtracted
Cosmic Background Radiation from the Planck spacecraft with anisotropies removed

If all observers see an isotropic universe, then spatial homogeneity follows; indeed homogeneity follows if only three spatially separated observers see isotropy.  Now we cannot observe the universe from any other point, so we cannot observationally establish that far distant observers see an isotropic universe.  Hence the standard argument is to assume a Copernican Principle: that we are not privileged observers.  This is plausible in that all observable regions of the universe look alike: we see no major changes in conditions anywhere we look.  Combined with the isotropy we see about ourselves, this implies that all observers see an isotropic universe.

The Copernican principle states that we are not privileged observers of the universe.  Any observer elsewhere in the universe will see the same universe that we do.  The laws of physics, chemistry, and biology are truly universal.  The Copernican principle is a good example of the application of Occam’s razor: unless there is evidence to the contrary, the simplest explanation that fits all the known facts is probably the correct one.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Leave a Reply

Your email address will not be published.