Beginnings, Quantum Gravity, and Inflation

We continue our series on the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

2.6  Inflation
Particle horizons in inflationary FL models will be much larger than in the standard models with ordinary matter, allowing causal connection of matter on scales larger than the visual horizon, and inflation also will sweep topological defects outside the visible domain.

The particle horizon is the distance beyond which light would have not yet had time to reach us in all the time since the Big Bang.  The visual horizon is the distance beyond which the universe was still opaque to photons due to high temperature and density.  The visual horizon, therefore, is not as far away as the particle horizon.  FL stands for Friedmann-Lemaître, the standard models of a flat, open, or closed universe.

What is inflation?  At the moment of the Big Bang, the expansion of the universe accelerated exponentially for a very short period of time.  This caused portions of space that had been close enough together to be causally connected to become causally disconnected.  While inflation does a very good job of explaining many observed features of our universe, such as its uniformity in all directions, at this point it is an untestable hypothesis (unlike special and general relativity), and the underlying physical principles are completely unknown.

2.7  The very early universe
Quantum gravity processes are presumed to have dominated the very earliest times, preceding inflation.  There are many theories of the quantum origin of the universe, but none has attained dominance.  The problem is that we do not have a good theory of quantum gravity, so all these attempts are essentially different proposals for extrapolating known physics into the unknown.  A key issue is whether quantum effects can remove the initial singularity and make possible universes without a beginning.  Preliminary results suggest that this may be so.

We currently live in a universe where the density may be too low to observe how gravity behaves at the quantum level.  Though we may never be able to build a particle accelerator with energies high enough to explore quantum gravity, quantum gravity might possibly play a detectable role in high-density stars such as white dwarfs, neutron stars, or black holes.  At the time of the Big Bang, however, the density of the universe was so high that quantum gravity certainly must have played a role in the subsequent development of our universe.

Do we live in the universe that had no beginning and will have no end?  A universe that is supratemporal—existing outside of time—because it has always existed and always will exist?  Admittedly, this is an idea that appeals to me, but at present it is little more than conjecture, or, perhaps, even wishful thinking.

2.7.1  Is there a quantum gravity epoch?
A key issue is whether the start of the universe was very special or generic.

Will science ever be able to answer this question?  I sincerely hope so.

2.8.1  Some misunderstandings
Two distantly separated fundamental observers in a surface {t = const} can have a relative velocity greater than c if their spatial separation is large enough.  No violation of special relativity is implied, as this is not a local velocity difference, and no information is transferred between distant galaxies moving apart at these speeds.  For example, there is presently a sphere around us of matter receding from us at the speed of light; matter beyond this sphere is moving away from us at a speed greater than the speed of light.  The matter that emitted the CBR was moving away from us at a speed of about 61c when it did so.

Thus, there are (many) places in our universe that are receding from us so fast that light will never have a chance to reach us from there.  Indeed, the cosmic background radiation that pervades our universe today was emitted by matter that was receding from us at 61 times the speed of light at that time.  That matter never was nor ever will be visible to us, but the electromagnetic radiation it emitted then, at the time of decoupling, is everywhere around us.  Think of it as an afterglow.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

A Small, Big, or Really Big Universe?

George F. R. Ellis writes in section 2.4.2 of his outstanding survey paper, Issues in the Philosophy of Cosmology:

Clearly we cannot obtain any observational data on what is happening beyond the particle horizon; indeed we cannot even see that far because the universe was opaque before decoupling.  Our view of the universe is limited by the visual horizon, comprised of the worldlines of furthest matter we can observe—namely, the matter that emitted the CBR at the time of last scattering.

The picture we obtain of the LSS by measuring the CBR from satellites such as COBE and WMAP is just a view of the matter comprising the visual horizon, viewed by us at the time in the far distant past when it decoupled from radiation.

Visual horizons do indeed exist, unless we live in a small universe, spatially closed with the closure scale so small that we can have seen right around the universe since decoupling.

The major consequence of the existence of visual horizons is that many present-day speculations about the super-horizon structure of the universe—e.g. the chaotic inflationary theory—are not observationally testable, because one can obtain no definite information whatever about what lies beyond the visual horizon.  This is one of the major limits to be taken into account in our attempts to test the veracity of cosmological models.

Let’s start by defining a few of the terms that Ellis uses above.

particle horizon – the distance beyond which light has not yet had time to reach us in all the time since the Big Bang

decoupling – the time after the Big Bang when the Universe had expanded and cooled enough that it was no longer a completely ionized opaque plasma; atoms could form and photons began traveling great distances without being absorbed

worldlines – the path of a photon (or any particle or object) in 4-dimensional spacetime: its location at each and every moment in time

CBRcosmic background radiation

LSS – last scattering surface

COBECosmic Background Explorer

WMAPWilkinson Microwave Anisotropy Probe

(And, Planck should be added now, too)

Now the question.  Do we live in a small, big, or really big universe?  The best answer we can give now (or, perhaps, even in the future) is that we live in a really big universe, though it is unlikely to be infinite.  Ellis himself provides a cogent argument in section 9.3.2 of the paper referenced here that infinity, while a very useful mathematical tool, does not ever exist in physical reality.  We shall investigate this topic in a future posting.

Even though general relativity shows us how matter defines the geometry of our observable universe, it tells us nothing about the topology of our universe, in other words, its global properties.  Do we live in a wrap-around universe where if we set off in one direction and traveled long enough, we’d eventually return to the same point in spacetime?  Is the topology of our universe finite or infinite?  At the moment it appears that we are not able to observe enough of the universe to discern its topology.  If that is true, we may never be able to understand what type of universe we live in.  But observational cosmologists will continue to search for the imprint of topology on our visible universe at the largest scales.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Liddle, A.R. 2015, An Introduction to Modern Cosmology, 3rd ed., Wiley, ISBN: 978-1-118-50214-3.