Observation, Theory, and Reality

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

8.3 Limits of Representation and Knowledge of Reality
It follows…that there are limits to what the scientific method can achieve in explanatory terms.  We need to respect these limits and acknowledge clearly when arguments and conclusions are based on some philosophical stance rather than purely on testable scientific argument.  If we acknowledge this and make that stance explicit, then the bases for different viewpoints are clear and alternatives can be argued about rationally.

We human beings want so badly to be able to explain our existence and existence itself that we tend to “fill in the blanks” and treat speculation (no matter how well reasoned) as if it were something akin to fact.  This is true for both science and religion.  A more reasonable approach, it seems to me, is to reject absolute certainty—especially where physical evidence is sparse or nonexistent—while always striving to deepen our understanding.  That is the scientist’s stock-in-trade—or should be.  Each of us needs to become more aware of the limitations of our understanding!

Thesis F6: Reality is not fully reflected in either observations or theoretical models.
Problems arise from confusion of epistemology (the theory of knowledge) with ontology (the nature of existence): existence is not always manifest clearly in the available evidence.  The theories and models of reality we use as our basis for understanding are necessarily partial and incomplete reflections of the true nature of reality, helpful in many ways but also inevitably misleading in others.  They should not be confused with reality itself!

We humans create our own “realities”, but under the very best of circumstances (science, for example), our “reality” is only an imperfect model of what actually exists.

The confusion of epistemology with ontology occurs all the time, underlying for example the errors of both logical positivism and extreme relativism.  In particular, it is erroneous to assume that lack of evidence for the existence of some entity is proof of its non-existence.  In cosmology it is clear for example that regions may exist from which we can obtain no evidence (because of the existence of horizons); so we can sometimes reasonably deduce the existence of unseen matter or regions from a sound extrapolation of available evidence (no one believes matter ends at or just beyond the visual horizon).  However one must be cautious about the other extreme, assuming existence can always be assumed because some theory says so, regardless of whether there is any evidence of existence or not.  This happens in present day cosmology, for example in presentations of the case for multiverses, even though the underlying physics has not been experimentally confirmed.  It may be suggested that arguments ignoring the need for experimental/observational verification of theories ultimately arise because these theories are being confused with reality, or at least are being taken as completely reliable total representations of reality.

Absence of evidence is not evidence of absence.  But, without evidence, all we have is conjecture, no matter how well informed.  As Carl Sagan once said, “Extraordinary claims require extraordinary evidence.”

No model (literary, intuitive, or scientific) can give a perfect reflection of reality.  Such models are always selective in what they represent and partial in the completeness with which they do so.  The only model that would reflect reality fully is a perfect fully detailed replica of reality itself! This understanding of the limits of models and theories does not diminish the utility of these models; rather it helps us use them in the proper way.  This is particularly relevant when we consider how laws of nature may relate to the origins of the universe itself, and to the existence and nature of life in the expanding universe.  The tendency to rely completely on our theories, even when untested, seems sometimes to arise because we believe they are the same as reality—when at most they are descriptions of reality.

Ellis makes a pretty good case here against dogma.  Though he does not specifically mention religion (and why should he, as the subject at hand is cosmology), I do think these ideas apply to religion as well.

Always a journey, never a destination.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Where Cosmology Meets Philosophy

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

The physical explanatory power of inflation in terms of structure formation, supported by the observational data on the fluctuation spectra, is spectacular.  For most physicists, this trumps the lack of identification and experimental verification of the underlying physics.  Inflation provides a causal model that brings a wider range of phenomena into what can be explained by cosmology, rather than just assuming the initial data had a specific restricted form.  Explaining flatness (Ω0 ≅ 1 as predicted by inflation) and homogeneity reinforces the case, even though these are philosophical rather than physical problems (they do not contradict any physical law; things could just have been that way).  However claims on the basis of this model as to what happens very far outside the visual horizon (as in the chaotic inflationary theory) results from prioritizing theory over the possibility of observational and experimental testing.  It will never be possible to prove these claims are correct.

Inflation is one compelling approach to explaining the structure we see in the universe today.  It is not necessarily the only one, but it currently has the most support.  Basically, a tiny fraction of a second after the Big Bang, the universe expanded dramatically.  Around 10-36 seconds after the Big Bang the universe had a diameter on the order of 1.2 × 10-27 meters.  To put that size in perspective, the diameter of a proton is between 0.84-0.87 × 10−15 meters.  So, when inflation began, the entire universe had a diameter almost a trillion times smaller than a single proton!  10-34 seconds later when the inflationary period was coming to an end, the size of the universe was a little over half the distance to Alpha Centauri!

The basic underlying cosmological questions are:
(1)  Why do the laws of physics have the form they do?  Issues arise such as what makes particular laws work?  For example, what guarantees the behaviour of a proton, the pull of gravity?  What makes one set of physical laws ‘fly’ rather than another?  If for example one bases a theory of cosmology on string theory, then who or what decided that quantum gravity would have a nature well described by string theory?  If one considers all possibilities, considering string theory alone amounts to a considerable restriction.
(2)  Why do boundary conditions have the form they do?  The key point here is, how are specific contingent choices made between the various possibilities, for example whether there was an origin to the universe or not.
(3)  Why do any laws of physics at all exist?  This relates to unsolved issues concerning the nature of the laws of physics: are they descriptive or prescriptive?  Is the nature of matter really mathematically based in some sense, or does it just happen that its behaviour can be described in a mathematical way?
(4)  Why does anything exist?  This profound existential question is a mystery whatever approach we take.

The answer to such questions may be beyond the limits of experimental science, or even beyond the limits of our intellect.  Maybe, even, these questions are as meaningless as “What lies north of the north pole?1because of our limited intellect.  Many would claim that because there appears to be limits to what science or human intellect can presently explain, that this constitutes evidence for the existence of God.  It does not.  Let’s just leave it as we don’t know.

Finally, the adventurous also include in these questions the more profound forms of the contentious Anthropic question:
(5)  Why does the universe allow the existence of intelligent life?
This is of somewhat different character than the others and largely rests on them but is important enough to generate considerable debate in its own right.

Well, a seemingly flippant answer to this question is we wouldn’t be here if it didn’t, but that begs the question.  Perhaps intelligent life is the mechanism by which the universe becomes self-aware, or is this just wishful thinking?  In the end, I am willing to admit that there may be some higher power in the universe—in the scientific pantheist and humanist sense—but I will stop short of calling that “God” in any usual sense of the term.

The status of all these questions is philosophical rather than scientific, for they cannot be resolved purely scientifically.  How many of them—if any—should we consider in our construction of and assessments of cosmological theories?

Perhaps the limitations of science (and, therefore, cosmology) is more a manifestation of the limitations of our human intellect than any constraint on the universe itself.

One option is to decide to treat cosmology in a strictly scientific way, excluding all the above questions, because they cannot be solved scientifically.  One ends up with a solid technical subject that by definition excludes such philosophical issues.  This is a consistent and logically viable option.  This logically unassailable position however has little explanatory power; thus most tend to reject it.

Let’s call this physical cosmology.

The second option is to decide that these questions are of such interest and importance that one will tackle some or all of them, even if that leads one outside the strictly scientific arena.  If we try to explain the origin of the universe itself, these philosophical choices become dominant precisely because the experimental and observational limits on the theory are weak; this can be seen by viewing the variety of such proposals that are at present on the market.

And let’s call this metaphysical cosmology.

1Attributed to Stephen Hawking

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Ryden, Barbara. 2003.  Introduction to Cosmology. San Francisco: Addison Wesley.

Do Dark Matter and Dark Energy Exist?

Numerous searches for the particle or particles responsible for dark matter have so far come up empty.  What if dark matter doesn’t really exist?  Could there be alternative explanation for the phenomena attributed to dark matter?

In the November 10, 2017 issue of the Astrophysical Journal, Swiss astronomer André Maeder presents an intriguing hypothesis that non-baryonic dark matter need not exist, nor dark energy either.  In “Dynamical Effects of the Scale Invariance of the Empty Space: The Fall of Dark Matter?” he suggests that scale invariance of empty space (i.e. very low density) over time could be causing the phenomena we attribute to dark matter and dark energy.

What is scale invariance?  In the cosmological context, it means that empty space and its properties do not change following an expansion or contraction.  Scales of length, time, mass, energy, and so on are defined by the presence of matter.  In the presence of matter, space is not scale invariant.  But take the matter away, and empty space may have some non-intuitive properties.  The expanding universe may require adding a small acceleration term that opposes the force of gravity.  In the earlier denser universe, this acceleration term was tiny in comparison to the rate at which the expansion was slowing down, but in the later emptier universe, the acceleration term dominates.  Sound like dark energy, doesn’t it?  But maybe it is an inherent property of empty space itself.

The existence of dark matter is primarily suggested by two  observed dynamical anomalies:

  1. Flat outer rotation curve of spiral galaxies (including the Milky Way)
  2. Motions of galaxies within galaxy clusters

Many spiral galaxies have a well-known property that  beyond a certain distance from their centers, their rotation rate (the orbital velocity of stars at that distance) stays nearly constant rather than decreasing as one would expect from Keplerian motion / Newtonian dynamics (think planets orbiting the Sun in our own solar system— the farther the planet is from the Sun, the slower it orbits).  Only there seems to be evidence that the rotation curves of galaxies when they are young (as seen in the high-redshift universe) do have a Keplerian gradient, but in the present-day universe the rotation curve is flat.  So, it appears, flat rotation curves could be an age effect.  In other words, in the outer regions of spiral galaxies, stars may be orbiting at the same velocity as they did in the past when they were closer to the galactic center.  Maeder writes:

…the relatively flat rotation curves of spiral galaxies is an age effect from the mechanical laws, which account for the scale invariant properties of the empty space at large scales.  These laws predict that the circular velocities remain the same, while a very low expansion rate not far from the Hubble rate progressively extends the outer layers, increasing the radius of the Galaxy and decreasing its surface density like 1/t.

We need to study the rotation curves (as a function of galactocentric radius all the way out to the outermost reaches of the galaxy) of many more galaxies at different redshifts (and thus ages) to help us test the validity of the scale invariant vs. dark matter hypotheses.  Maeder suggests a thorough rotation study of two massive and fast-rotating galaxies, UGC 2953 (a.k.a. IC 356; 50-68 Mly) and UGC 2487 (a.k.a. NGC 1167; 219-225 Mly), would be quite interesting.

The observed motions of galaxies within many galaxy clusters seems to indicate there is a substantial amount of unseen mass within these clusters, through application of the virial theorem.  However, the motions within some galaxy clusters such as Coma (336 Mly) and Abell 2029 (1.1 Gly) may be explainable without the need to resort to “exotic” dark matter.

Then there’s the AVR (Age-Velocity Dispersion Relation) problem which, incidentally, has nothing to do with dark matter.  But it may offer evidence for the scale invariant hypothesis.  It is convenient to specify the motion of a star in a spiral galaxy such as the Milky Way in a galactocentric coordinate system.

U = component of velocity towards the galaxy center

V = component of velocity in the direction of galactic rotation

W = component of velocity orthogonal to the galactic plane

Maeder writes:

The AVR problem is that of explaining why the velocity dispersion, in particular for the W-component, considerably increases with the age of the stars considered … Continuous processes, such as spiral waves, collisions with giant molecular clouds, etc… are active in the disk plane and may effectively influence the stellar velocity distributions.  However…vertical heating (the increase of the dispersion σW) is unexpected, since the stars spend most of their lifetime out of the galactic plane.

There may be more to “empty” space than meets the eye…

References
Maeder, A., 2017, ApJ, 849, 158
arXiv:1710.11425

Theory and Observation

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis F1: Philosophical choices necessarily underly cosmological theory.
Some cosmologists tend to ignore the philosophical choices underlying their theories; but simplistic or unexamined philosophical standpoints are still philosophical standpoints!

Cosmology, and indeed all human inquiry, is based on (at least) two unproven (though certainly reasonable) assumptions:

  1. The Universe exists.
  2. The human mind is at least to some degree capable of perceiving and understanding the Universe.

Any cosmological theory will have additional foundational unproven assumptions.  These are called axioms.  Ellis admonishes us to at least be aware of them, and to admit to them.

8.1 Criteria for theories
As regards criteria for a good scientific theory, typical would be the following four areas of assessment: (1) Satisfactory structure: (a) internal consistency, (b) simplicity (Ockham’s razor), and (c) aesthetic appeal (‘beauty’ or ‘elegance’); (2) Intrinsic explanatory power: (a) logical tightness, (b) scope of the theory—the ability to unify otherwise separate phenomena, and (c) probability of the theory or model with respect to some well-defined measure; (3) Extrinsic explanatory power, or relatedness: (a) connectedness to the rest of science, (b) extendability—providing a basis for further development; (4) Observational and experimental support, in terms of (a) testability: the ability to make quantitative as well as qualitative predications that can be tested; and (b) confirmation: the extent to which the theory is supported by such tests as have been made.

As you can see, a theory is not an opinion.  It must be well-supported by facts.  It must be internally consistent.  It must have explanatory power.  The Russian physicist A. I. Kitaĭgorodskiĭ (1914-1985) put it succinctly: “A first-rate theory predicts; a second-rate theory forbids, and a
third-rate theory explains after the event.”  Einstein’s special and general relativity are spectacular examples of first-rate theories.  In over 100 years of increasingly rigorous and sophisticated experiments and observations, relativity has never been proven to be incorrect.

Ellis emphasizes the importance of observational and experimental support in any scientific theory.

It is particularly the latter that characterizes a scientific theory, in contrast to other types of theories claiming to explain features of the universe and why things happen as they do.  It should be noted that these criteria are philosophical in nature in that they themselves cannot be proven to be correct by any experiment.  Rather their choice is based on past experience combined with philosophical reflection.  One could attempt to formulate criteria for good criteria for scientific theories, but of course these too would need to be philosophically justified.  The enterprise will end in infinite regress unless it is ended at some stage by a simple acceptance of a specific set of criteria.

So, even our criteria about what makes a good scientific theory rest upon axioms that cannot be proven.  But unlike religion, scientific theories never posit the existence of any supernatural entity.

Thesis F3: Conflicts will inevitably arise in applying criteria for satisfactory cosmological theories.
The thrust of much recent development has been away from observational tests toward strongly theoretically based proposals, indeed sometimes almost discounting observational tests.  At present this is being corrected by a healthy move to detailed observational analysis of the consequences of the proposed theories, marking a maturity of the subject.  However because of all the limitations in terms of observations and testing, in the cosmological context we still have to rely heavily on other criteria, and some criteria that are important in most of science may not really make sense.

String theory? Cosmic inflation?  Multiverse? If a theory is currently neither testable nor directly supported by observations, is it science, or something else?

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Emergence of Complexity

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

7.3 Emergence of complexity
As the universe evolves an increase of complexity takes place in local systems as new kinds of objects come into being that did not exist before—nuclei, atoms, stars and galaxies, planets, life, consciousness, and products of the mind such as books and computers.  New kinds of physical states come into being at late times such as Bose-Einstein condensates, that plausibly cannot exist without the intervention of intelligent beings.

The first atoms formed about 400 thousand years after the Big Bang.  The first stars, at about 100 million years.  The emergence of atoms, stars, planets, life, intelligence, humans, morality, a Brahms symphony, etc. are a natural consequence of all the physical laws that existed at the moment of the Big Bang, 13.8 billion years ago.  There is nothing supernatural about the unfolding of the universe, remarkable as it is.  It is a completely natural process.  The only possibility of anything supernatural, I believe, is the cause of the Big Bang itself.  And, without scientific evidence…

We may never know or be able to understand the Big Bang, but the parturient possibilities contained in that creative moment are truly mind boggling: all that we see around us, all that was and is yet to be, existed then in a nascent state.  The universe as it evolves is not merely moving the furniture around, but it is creating entirely new structures and entities that never existed before.

Through the emergence of intelligence across billions of years, the universe has, at last, become self-aware.  Our consciousness is its consciousness.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

What Is and What Might Have Been

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis E2: We cannot take the nature of the laws of physics for granted.
One cannot take the existence and nature of the laws of physics (and hence of chemistry) as unquestionable in cosmology—which seems to be the usual habit in biological discussions on the origin and evolution of life.  This is in stark contrast to the rest of science, where we are content to take the existence and nature of the laws describing the fundamental behaviour of matter as given and unchangeable.  Cosmological investigation is interested in the properties of hypothetical universes with different physical behaviour.  Consideration of ‘what might have been’ is a useful cosmological speculation that may help throw light on what actually is; this is a statement of the usefulness of ‘Gedanken experiments‘ in cosmology.

Practical science, engineering, and technology are prescriptive.  If we do a, we know from experience that b will occur.  Using the laws of physics, we can predict the location of the Moon as a function of time, put a spacecraft in orbit around Saturn, or build a light bulb that will illuminate.  Though we may be curious, we are not required to know why or how these laws exist—or how they might have been different—only that they do work, time and time again.

Cosmology, though firmly rooted in science, is different.  We are passive observers in a very large and very old universe, and there is no absolute guarantee that the laws of physics that work for us so well in the here and now apply to all places and at all times.  We must attempt to understand the laws of physics in a larger context that does involve some well-reasoned and reasonable speculation.

“Not only does God … play dice, but He sometimes confuses us by throwing them where they can’t be seen.” – Stephen Hawking

“Sometimes attaining the deepest familiarity with a question is our best substitute for actually having the answer.” – Brian Greene

In politics, governance, sociology, and philosophy, too, I would submit to you that consideration of “what might have been” is useful in helping us to understand what actually is.  Such reflection, en masse, might even lead to substantive change.

“Why is it that here in the United States we have such difficulty even imagining a different sort of society from the one whose dysfunctions and inequalities trouble us so?  We appear to have lost the capacity to question the present, much less offer alternatives to it.  Why is it so beyond us to conceive of a different set of arrangements to our common advantage?” – Tony Judt

Getting back to cosmology, however, for the moment…

Indeed if one wants to investigate issues such as why life exists in the universe, consideration of this larger framework—in essence, a hypothetical ensemble of universes with many varied properties—is essential (this is of course not the same as assuming an ensemble of such universes actually exists).  However, we need to be very cautious about using any claimed statistics of universes in such a hypothetical ensemble of all possible or all conceivable universes.  This is usually not well defined, and in any case is only relevant to physical processes if either the ensemble actually exists, rather than being a hypothetical one, or if it is the outcome of processes that produce well-defined probabilities—an untestable proposal.  We can learn from such considerations the nature of possible alternatives, but not necessarily the probability with which they might occur (if that concept has any real meaning).

It is easy to imagine a universe without life.  But we obviously do not live in such a universe.  There may be other universes devoid of life.

For the more thoughtful among us, it is easy to imagine a civilization without war, guns, violence, extrinsic suffering1 caused by others, or deprivation.  Obviously, we do not live in such a society.  But how can we say it is impossible, or even improbable?  It would be easy to find many millions of people in the world even today that would never fight in a war, would never own or use a gun, who would never resort to violence, who would never cause others to suffer, and who would make eliminating deprivation and poverty a top priority.  The question for the scientists is: what is wrong with the rest of us?

1Extrinsic suffering is suffering caused by others or circumstances completely outside of one’s control.  Intrinsic suffering, on the other hand, is self-inflicted—through our own failings, poor judgement, or mistakes that we make.

Growing Older

As we grow older,
That which is older grows upon us.
Time accelerates,
And the world seems a smaller place.

The years go by like months,
The months go by like weeks,
The weeks go by like days,
The days go by like hours,
And the hours go by like minutes.

And our world which in our youth was all that we knew
Slowly reveals itself to be a surprisingly alien place,
Full of centuries of hard work, unlikely events, and compromise:
The world could be a very different (and better) place,
Even within the confines of human nature.

Taken to its natural conclusion
Were we each to live for millennia, perhaps longer
We would find eternity in an instant
And infinity at the door.

David Oesper

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Constants of Nature

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

The constants of nature are indeed invariant, with one possible exception: the fine structure constant, where there is claimed to be evidence of a very small change over astronomical timescales.  That issue is still under investigation.  Testing such invariance is fundamentally important, precisely because cosmology usually assumes as a ground rule that physics is the same everywhere in the universe.  If this were not true, local physics would not guide us adequately as to the behaviour of matter elsewhere or at other times, and cosmology would become an arbitrary guessing game.

The fine structure constant (α) is a unitless number, approximately equal to 1/137, that characterizes the strength of the electromagnetic force between electrons.  Its value is the same no matter what system of measurement one chooses.  If the value of α were just a little smaller, molecular bonds would be less stable.  If the value of α were just a little larger, carbon—which is essential to life—could no longer be produced inside of stars.

Do constants of nature, specifically dimensionless physical constants such as α, the fine structure constant, and μ, the proton-to-electron mass ratio1, vary with time?  This is an active topic of investigation.  If constants of nature change at all, they change so slowly that it presents a formidable challenge to measure that change.  But if they do indeed change, it would have profound implications for our understanding of the universe.  A lot can happen in 13.8 billion years that might not be at all obvious in the infinitesimal interval of a human life or even human civilization.

“Despite the incessant change and dynamic of the visible world, there are aspects of the fabric of the universe which are mysterious in their unshakeable constancy.  It is these mysterious unchanging things that make our universe what it is and distinguish it from other worlds we might imagine.” – J.D. Barrow, The Constants of Nature. (Vintage, 2003).

I’d like to conclude this discussion of constancy and change with a poem I wrote about the possibility of sentient life having a very different sense of time than we humans do.

Life On a Cold, Slow World

Life on a cold, slow world
On Europa, perhaps, or even Mars
On distant moons and planets of other stars.

A minute of time for some anti-freeze being
Might span a year for us human folk
(A greeting could take a week, if spoke.)

How fast our busy lives would seem to pass
Through watchful eyes we cannot see
Curious about our amative celerity.

The heartbeat of the universe runs slow and deep
We know only violent change, the sudden leap
But that which is most alive appears to sleep.

David Oesper

1μ = mp / me ≅ 1836

References
Barrow, J.D., Webb, J.K., 2005, Scientific American, 292, 6, 56-63

Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

The Beginning

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis D1: An initial singularity may or may not have occurred.
A start to the universe may have occurred a finite time ago, but a variety of alternatives are conceivable: eternal universes, or universes where time as we know it came into existence in one or another way.  We do not know which actually happened, although quantum gravity ideas suggest a singularity might be avoided.

If we imagine, for a moment, running the clock of the universe backwards to earlier and earlier times, its size gets smaller and its density gets larger until we reach a moment—even earlier than the putative inflationary era—when classical physics at the macroscopic level no longer applies and some (as yet unknown) quantum physics must apply to everything—even gravity.  Therein lies the problem, because if you run the clock backwards just 5.39 x 10-44 second from this time, you reach the purported moment of the Big Bang—the initial singularity.  But whoa (or perhaps woe)!  How can we say anything about the Big Bang—or even if it occurred at all—since the laws of known physics completely break down 5.39 x 10-44 second (the Planck time) after the Big Bang!  See the problem?

Perhaps the universe came into existence through a process analogous to radioactive decay where an alpha particle leaves a nucleus through quantum tunneling.  Perhaps our universe “tunneled” into existence from somewhere else, and thus our beginning isn’t really the beginning.  This is just one of many possibilities.

This is a key issue in terms of the nature of the universe: a space-time singularity is a dramatic affair, where the universe (space, time, matter) has a beginning and all of physics breaks down and so the ability to understand what happens on a scientific basis comes to an end. However eternal existence is also problematic, leading for instance to the idea of Poincaré’s eternal return: everything that ever happened will recur an infinite number of times in the future and has already occurred an infinite number of times in the past.  This is typical of the problems associated with the idea of infinity.  It is not clear in the end which is philosophically preferable: a singularity or eternal existence.  That decision will depend on what criteria of desirability one uses.

While infinity is a highly useful mathematical device, one can make a strong argument that infinities do not exist in the physical universe (or even multiverse).  Quantum physics already gives us a possible clue about the infinitely small: we appear not to be able to subdivide space or time any further than the Planck length (1.616 x 10-35 meter) or the Planck time (5.39 x 10-44 second).  We would not be able to distinguish between two points less than a Planck length apart, nor two moments in time less than a Planck time apart.  While harder to envision, might not there also be an upper limit to size?  And time?

Thesis D2: Testable physics cannot explain the initial state and hence specific nature of the universe.
A choice between different contingent possibilities has somehow occurred; the fundamental issue is what underlies this choice.  Why does the universe have one specific form rather than another, when other forms consistent with physical laws seem perfectly possible?  The reasons underlying the choice between different contingent possibilities for the universe (why one occurred rather than another) cannot be explored scientifically.  It is an issue to be examined through philosophy or metaphysics.

Metaphysics is the part of philosophy that deals with existence, space, time, cause and effect, and the like.  Metaphysics begins where physics necessarily ends due to observational limitations.

Did anything exist before the Big Bang?

Was there a Big Bang?

What are the physical properties of the very early universe, when energy densities existed that are far beyond our ability to recreate in the laboratory?

What lies beyond our particle horizon?

Are there other universes?

Why does anything exist at all?

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Liddle, A.R. 2015, An Introduction to Modern Cosmology, 3rd ed., Wiley, ISBN: 978-1-118-50214-3.

Windows to the Earliest: Neutrinos and Gravitational Waves

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

Thesis B7…
Neutrinos and gravitational waves will in principle allow us to peer back to much earlier times (the time of neutrino decoupling and the quantum gravity era respectively), but are much harder to observe at all, let alone in useful directional detail.  Nevertheless the latter has the potential to open up to us access to eras quite unobservable in any other way.  Maybe they will give us unexpected information on processes in the very early universe which would count as new features of physical cosmology.

The cosmic microwave background (CMB, T = 2.73 K) points us to a time 380,000 years after the Big Bang when the average temperature of the universe was around 3000 K.  But there must also exist abundant low-energy neutrinos (cosmic neutrino background, CNB, CνB, relic neutrinos) that provide a window to our universe just one second after the Big Bang during the radiation dominated era.  That’s when neutrinos decoupled from normal baryonic matter.

As the universe expanded, these relic neutrinos cooled from a temperature of 1010 K down to about 1.95 K in our present era, but such low-energy neutrinos almost never interact with normal matter.  Even though the density of these relic neutrinos should be at least 340 neutrinos per cm3 (including 56 electron neutrinos per cm3 which will presumably be easier to detect), detecting them at all will be exceedingly difficult.

Neutrinos interact with matter only through the weak nuclear force (which has a very short range), and low-energy neutrinos are much more difficult to detect than higher-energy neutrinos—if they can be detected at all.  If neutrinos have mass, then they will also interact gravitationally with other particles having mass, but this interaction is no doubt unmeasurable due to the neutrino’s tiny mass and the weakness of the gravitational force between subatomic particles.

The cosmic gravitational background (CGB) points us to the time of the Big Bang itself.  Faessler, et al. (2016) state

The inflationary expansion of the Universe by about a factor 1026 between roughly 10-35 to 10-33 seconds after the BB couples according to General Relativity to gravitational waves, which decouple after this time and their fluctuations are the seed for Galaxy Clusters and even Galaxies. These decoupled gravitational waves run since then with only very minor distortions through the Universe and contain a memory to the BB.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Faessler, A., Hodák, R., Kovalenko, S., and Šimkovic, F. 2016
[https://arxiv.org/abs/1602.03347]

The Sachs-Wolfe Effect

The cosmic microwave background (CMB) peaks at a wavelength of 1.9 mm and frequency 160.23 GHz, if spectral radiance is defined in terms  of frequency.  If spectral radiance is defined in terms of wavelength, then the CMB peaks at wavelength 1.1 mm.  This radiation comes from all directions, and the curve of intensity as a function of wavelength very closely approximates a perfect black body having temperature 2.725 Kelvin.  Since the Big Bang 13.8 billion years ago, the universe has expanded and cooled so that today its temperature is 2.725 K.

About 380,000 years after the Big Bang, the universe had expanded and cooled enough so that for the first time it became transparent to electromagnetic radiation.  Thus when we accurately map the exact spectrum of the cosmic microwave background in different directions, we can construct a “baby picture” of the universe when it was only 380,000 years old.

Our baby picture is not smooth but has features.  At that early time, the universe had already developed into denser regions, and less dense ones. Now, it is important to note that cosmic microwave background photons that left a denser part of the universe have been gravitationally redshifted to slightly longer wavelengths (and lower frequencies) to a greater extent than elsewhere.  This is called the Sachs-Wolfe effect.

 

Lots of exciting cosmological information is coming out of mapping the tiny differences in the CMB spectrum as we look in different directions. I’m wondering, though, if anyone has seen temporal variations in the CMB? In other words, if you stay pointed in a particular direction and carefully measure the CMB spectrum over time, does it change or fluctuate at all (after all sources of noise have been removed)?  Even though our current understanding of cosmology might lead us to believe that the CMB would not change fast enough for us to measure, has anybody looked?