Brightest Event Ever Observed

On June 14, 2015, perhaps the intrinsically brightest event ever recorded was detected at or near the center of the obscure galaxy APMUKS(BJ) B215839.70−615403.9 in the southern constellation Indus, at a luminosity distance of about 3.8 billion light years.

ASASSN-15lh (All–Sky Automated Survey for SuperNovae), also designated SN 2015L, is located at α2000=22h02m15.45s, δ2000=-61° 39′ 34.6″ and is thought to be a super-luminous supernova—sometimes called a hypernova—but other interpretations are still in play.

Let’s put the brightness of SN 2015L in context.  Peaking at an absolute visual magnitude of -24.925 (which would be its apparent visual magnitude at the standard distance of 10 parsecs), SN 2015L would shine as bright as the Sun in our sky if it were 14 light years away—about the distance to van Maanen’s Star, the nearest solitary white dwarf.  SN 2015L would be as bright as the full moon if it were at a distance of 8,921 light years.  SN 2015L would be as bright as the planet Venus if it were at a distance of 333,000 light years.  Since the visible part of our galaxy is only about 100,000 ly across, had this supernova occurred anywhere in our galaxy, it would have been brighter than Venus.  If SN 2015L had occurred in M31, the Andromeda Galaxy, 2.5 million light years away, it would take its place (albeit temporarily) as the third brightest star in the night sky (-0.47m), after Sirius (-1.44m) and Canopus (-0.62m), but brighter than Alpha Centauri (-0.27m) and Arcturus (-0.05m).

The Open Supernova Catalog (Guillochon et al. 2017) lists three events that were possibly intrinsically brighter than SN 2015L.  Two events were afterglows of gamma ray bursts GRB 81007 and GRB 30329: SN 2008hw at -25.014m and SN 2003dh at -26.823m, respectively.  And the other event was the first supernova detected by the Gaia astrometric spacecraft, Gaia 14aaa, 500 Mly distant, shining perhaps as brightly as -27.1m.

References
Chatzopoulos E., Wheeler J. C., Vinko J., et al., 2016, ApJ, 828, 94
Dong S., Shappee B. J., Prieto J. L., Jha S. W., et al., 2016, Science, 351, 257
Guillochon J., Parrent J., Kelley L. Z., Margutti R., 2017, ApJ, 835, 64

Stars Like Our Sun

The spectral type of our Sun is G2V, that is to say, a G2 main-sequence star.

Sun
Zodiacal Constellations
mv = -26.75, mb = -26.10, B-V = 0.65
Ecliptic
0.0000158 ly
Single star

Here are the brightest stars visible in the nighttime sky that have the same spectral type and therefore are, arguably, most like our Sun.  All have an apparent visual magnitude brighter than +6.00.

Rigil Kentaurus A, Alpha Centauri A (α Cen A)
Centaurus
mv = 0.01, mb = 0.72, B-V = 0.71
α2000 = 14h 39m 36s, δ2000 = -60° 50′ 02″
4.30 – 4.34 ly
Triple star system

Alula Australis B, Xi Ursae Majoris B (ξ UMa B)
Ursa Major
mv = 4.73, mb = 5.38, B-V = 0.65
α2000 = 11h 18m 11s, δ2000 = +31° 31′ 46″
28 – 30 ly
Quintuple star system

HR 4523 A
Centaurus
mv = 4.88, mb = 5.55, B-V = 0.67
α2000 = 11h 46m 31s, δ2000 = -40° 30′ 01″
30.0 – 30.1 ly
Binary star system; exoplanet

Eta Coronae Borealis A & B (η CrB A & B)
Corona Borealis
A: mv = 5.577, mb = 6.123, B-V = 0.546
B: mv = 5.95, mb = 6.48, B-V = 0.53
α2000 = 15h 23m 12s, δ2000 = +30° 17′ 18″
57 – 59 ly
Triple star system

HR 8323
Grus
mv = 5.58, mb = 6.18, B-V = 0.60
α2000 = 21h 48m 16s, δ2000 = -47° 18′ 13″
51.9 – 52.5 ly
Single star

Mu Velorum B (μ Vel B)
Vela
mv = 5.59, mb = 6.10, B-V = 0.51
α2000 = 10h 46m 46s, δ2000 = -49° 25′ 12″
116 – 119 ly
Binary star system

HR 7845 A
Capricornus
mv = 5.65, mb = 6.34, B-V = 0.69
α2000 = 20h 32m 24s, δ2000 = -09° 51′ 12″
79 – 80 ly
Binary star system

HR 3578
Hydra
mv = 5.86, mb = 6.39, B-V = 0.53
α2000 = 8h 58m 44s, δ2000 = -16° 07′ 58″
68 – 69 ly
Single star

HR 2007
Orion
mv = 5.97, mb = 6.61, B-V = 0.64
α2000 = 5h 48m 35s, δ2000 = -4° 05′ 41″
49.2 – 49.8 ly
Single star with exoplanet

The Eta Coronae Borealis system is noteworthy in that its two primary components are both G2V stars orbiting each other every 41.6 years.  The third component of this system is a distant infrared dwarf, spectral type L8V.

Two of these G2V stars host at least one exoplanet: HR 4523A in Centaurus and HR 2007 in Orion.

HR 4523A has a planet midway in mass between Uranus and Neptune orbiting every 122 days between 0.30 and 0.62 AU from the star (similar to orbital distance of the planet Mercury in our own solar system).  The other stellar component of this system. HR 4523B, is a distant M4V star currently orbiting about 211 AU from HR 4523A.

HR 2007, a single star like the Sun, has a planet about 78% more massive than Neptune, orbiting every 407 days, more or less.  If this planet were in our own solar system, it would range between the orbits of Venus and Mars, roughly.