Bad Lighting at Dodgeville High School

At a school board meeting in November 2017, concerns were raised about inadequate lighting for evening school events, so the Dodgeville School District directed Alliant Energy to install some additional lights.  The lighting was installed during a warm spell in January 2018, and the photographs you see below were taken during the afternoon and evening of June 17, 2018.

Rather than being used only when school events are taking place in the evening, these terrible lights are on dusk-to-dawn 365 nights a year.  They are too bright, poorly directed, poorly shielded, and the glare they cause on W. Chapel St. and N. Johnson St. could pose a safety concern for pedestrians not being seen by drivers experiencing disability glare.  I can imagine that adjacent neighbors are not too happy with the light trespass into their yards and residences, either.

This is a perfect example of poor lighting design and unintended consequences.

Bleacher path floodlight produces a great deal of uplight, and illuminates the disc golf course far more than the bleacher path
Bleacher path floodlight is mounted in a nearly-horizontal orientation
Bleacher path floodlight
Bleacher path floodlight
Bleacher path looking towards the bleachers

 

Bleacher path looking towards W. Chapel St.

 

Bleacher path at night
Bleacher path floodlight lighting up the disc golf course. Also note how much brighter the illumination is from the newly-installed blue-white LED streetlight as compared with the orangish light from the older high pressure sodium (HPS) luminaire.
Bleacher path floodlight lighting up the disc golf course and basket
Large tree being brightly illuminated all night long with bleacher path in foreground
Sub-optimal parking lot lighting at Dodgeville High School
Overflow parking floodlight

 

Two additional overflow parking lot floodlights
Overflow parking floodlight

 

Overflow parking floodlights

 

Overflow parking floodlight glare and spill light

 

Overflow parking floodlight glare onto W. Chapel St. in Dodgeville
Overflow parking glare and spill light onto W. Chapel St. in Dodgeville

29769 (1999 CE28)

Early in the morning of Tuesday, May 29, 2018, I was fortunate enough to record a 3.2 second occultation of the 12.6 magnitude star UCAC4 359-140328 in Sagittarius by the unnamed asteroid 29769, originally given the provisional designation 1999 CE28.

Not only is this the first time this asteroid has been observed to pass in front of a star, it is the smallest asteroid I have ever observed passing in front of a star.  At an estimated diameter of 14.7 miles, had I been located just 7.4 miles either side of the centerline of the shadow path, I would have missed this event altogether!  This is also the first positive event I’ve recorded for an (as yet) unnamed asteroid, and the first positive event I’ve recorded for an asteroid having more than a four-digit number (29769).

As you can see in the map above, the predicted shadow path was quite a ways northwest of my location.  Even though I used the Gaia DR2 position for UCAC4 359-140328 for the path prediction, the existing orbital elements for asteroid 29769 did not yield a correspondingly accurate position for the asteroid.

Though a single chord across an asteroid does not give us any definitive information about its overall size and shape, it does give us a very accurate astrometric position that will be used to improve the orbital elements for this asteroid.

The central moment of this occultation event was 6:00:02.414 UT on May 29, 2018, which was about 20 seconds later than predicted.  The astrometric equatorial coordinates for the star UCAC4 359-140328 referenced to the J2000 equinox (using Gaia DR2 with proper motion applied) are

UCAC4 359-140328
α = 18h 21m 01.6467
δ = -18° 20′ 46.282″

 

Using JPL Horizons (with the extra precision option selected), the astrometric equatorial coordinates for the asteroid 29769 (1999 CE28), again referenced to the J2000 equinox, are

29769 (1999 CE28)
α = 18h 21m 01.6388
δ = -18° 20′ 46.320″

 

As we can see above, the actual position of the asteroid at the time of the event was 0.0079 seconds of time east and 0.038 seconds of arc north of its predicted position.  This observation will provide a high quality astrometric data point for the asteroid that will be used to improve its orbit.  Gratifying!

As of this writing, there are 523,584 minor planets that have sufficiently well enough determined orbits to have received a number.  Of these, only 21,348 have received names (4.1%).  So, I guess you could say there is quite a backlog of numbered asteroids awaiting to receive names.  The IAU should consider naming some minor planets after the most productive asteroid occultation observers around the world.  There aren’t very many of us, and this would certainly be an encouragement to new and existing observers.

Project Gutenberg

Over 56,000 historical books and other documents, most published prior to 1923, are available online for downloading or browsing at Project Gutenberg (http://www.gutenberg.org), with more being added all the time. A quick search of the term “astronomy” yields the following:

The Discovery of a World in the Moone: Or, A Discovrse Tending To Prove That ‘Tis Probable There May Be Another Habitable World In That Planet (1638)
John Wilkins (1614-1672)

The Study of Astronomy, Adapted to the capacities of youth (1796)
John Gabriel Stedman (1744-1797)

The Martyrs of Science, or, The lives of Galileo, Tycho Brahe, and Kepler (1841)
David Brewster (1781-1868)

Lectures on Astronomy (1854)
The Wit and Humor of America, Volume V. (1911)
George Horatio Derby (1823-1861), writing under the name of John Phoenix
Marshall Pinckney Wilder (1859-1915), editor

Letters on Astronomy: In which the Elements of the Science are Familiarly Explained in Connection with Biographical Sketches of the Most Eminent Astronomers (1855)
Denison Olmsted (1791-1859)

The Uses of Astronomy: An Oration Delivered at Albany on the 28th of July, 1856 (1856)
Edward Everett (1794-1865)

Cosmos: A Sketch of the Physical Description of the Universe, Vol. 1 (1858)
Alexander von Humboldt (1769-1859)

Curiosities of Science, Past and Present: A Book for Old and Young (1858)
John Timbs (1801-1875)

Astronomy for Young Australians (1866)
James Bonwick (1817-1906)

Meteoric astronomy: A treatise on shooting-stars, fire-balls, and aerolites (1867)
Daniel Kirkwood (1814-1895)

Popular Books on Natural Science: For Practical Use in Every Household, for Readers of All Classes (1869)
Aaron David Bernstein (1812-1884)

Half-hours with the Telescope: Being a Popular Guide to the Use of the Telescope as a Means of Amusement and Instruction (1873)
Richard Anthony Proctor (1837-1888)

Astronomical Myths: Based on Flammarions’s “History of the Heavens” (1877)
John Frederick Blake (1839-1906)
Camille Flammarion (1842-1925)

New and Original Theories of the Great Physical Forces (1878)
Henry Raymond Rogers (1822-1901)

Recreations in Astronomy: With Directions for Practical Experiments and Telescopic Work (1879)
Henry White Warren (1831-1912)

The Sidereal Messenger of Galileo Galilei and a Part of the Preface to Kepler’s Dioptrics Containing the Original Account of Galileo’s Astronomical Discoveries (1880)
Galileo Galilei (1564-1642)
Johannes Kepler (1571-1630)
Edward Stafford Carlos ((1842–1927), translator

Sir William Herschel: His Life and Works (1880)
Edward Singleton Holden (1846-1914)

Popular Scientific Recreations in Natural Philosophy, Astronomy, Geology, Chemistry, etc., etc., etc. (1881)
Gaston Tissandier (1843-1899)

Publications of the Astronomical Society of the Pacific, Volume 1 (1889)
Astronomical Society of the Pacific (1889-)

A Textbook of General Astronomy for Colleges and Scientific Schools (1889)
Charles Augustus Young (1834-1908)

Time and Tide: A Romance of the Moon (1889)
Robert Stawell Ball (1840-1913)

Astronomy with an Opera-glass: A Popular Introduction to the Study of the Starry Heavens with the Simplest of Optical Instruments (1890)
Garrett Putman Serviss (1851-1929)

Pioneers of Science (1893)
Sir Oliver Joseph Lodge (1851-1940)

Great Astronomers (1895)
Robert Stawell Ball (1840-1913)

The Astronomy of Milton’s ‘Paradise Lost’ (1896)
Thomas Nathaniel Orchard, M.D.

Myths and Marvels of Astronomy (1896)
Richard Anthony Proctor (1837-1888)

The Story of Eclipses (1899)
George Frederick Chambers (1841-1915)

The Tides and Kindred Phenomena in the Solar System: The Substance of Lectures Delivered in 1897 at the Lowell Institute, Boston, Massachusetts (1899)
Sir George Howard Darwin (1845-1912)

The Royal Observatory, Greenwich: A Glance at Its History and Work (1900)
Edward Walter Maunder (1851-1928)

The Story of the Heavens (1900)
Robert Stawell Ball (1840-1913)

Other Worlds: Their Nature, Possibilities and Habitability in the Light of the Latest Discoveries (1901)
Garrett Putman Serviss (1851-1929)

Pleasures of the telescope: An Illustrated Guide for Amateur Astronomers and a Popular Description of the Chief Wonders of the Heavens for General Readers (1901)
Garrett Putman Serviss (1851-1929)

A Text-Book of Astronomy (1903)
George Cary Comstock (1855-1934)

Astronomical Discovery (1904)
Herbert Hall Turner (1861-1930)

A New Astronomy (1906)
David Peck Todd (1855-1939)

New Theories in Astronomy (1906)
William Stirling (1822-1900)

Side-Lights on Astronomy and Kindred Fields of Popular Science (1906)
Simon Newcomb (1835-1909)

The Children’s Book of Stars (1907)
Geraldine Edith Mitton (1868-1955)

Mathematical Geography (1907)
Willis Ernest Johnson (1869-1951)

Astronomical Instruments and Accessories (1908)
William Gaertner and Company (1896-)
now Gaertner Scientific Corporation

The Astronomy of the Bible: An Elementary Commentary on the Astronomical References of Holy Scripture (1908)
Edward Walter Maunder (1851-1928)

A Popular History of Astronomy During the Nineteenth Century, Fourth Edition (1908)
Agnes Mary Clerke (1842-1907)

Astronomical Curiosities: Facts and Fallacies (1909)
John Ellard Gore (1845-1910)

The Future of Astronomy (1909)
Edward Charles Pickering (1846-1919)

History of Astronomy (1909)
George Forbes (1849-1936)

Astronomy for Amateurs (1910)
Camille Flammarion (1842-1925)

Astronomy of To-day: A Popular Introduction in Non-Technical Language (1910)
Cecil Goodrich Julius Dolmage (1870-1908)

The World’s Greatest Books — Volume 15 — Science (1910)
Arthur Mee (1875-1943), editor
Sir John Alexander Hammerton (1871-1949), editor

The Science of the Stars (1912)
Edward Walter Maunder (1851-1928)

Are the Planets Inhabited? (1913)
Edward Walter Maunder (1851-1928)

Woman in Science: With an Introductory Chapter on Woman’s Long Struggle for Things of the Mind (1913)
John Augustine Zahm (1851-1921), writing under the name H. J. Mozans

A Field Book of the Stars (1914)
William Tyler Olcott (1873-1936)

An Introduction to Astronomy (1916)
Forest Ray Moulton (1872-1952)

Scientific Papers by Sir George Howard Darwin. Volume V. Supplementary Volume (1916)
Sir George Howard Darwin (1845-1912)
Ernest William Brown (1866-1938), contributor
Sir Francis Darwin (1848-1925), contributor

The gradual acceptance of the Copernican theory of the universe (1917)
Dorothy Stimson (1890-1988)

Astronomical Lore in Chaucer (1919)
Florence Marie Grimm

Lectures on Stellar Statistics (1921)
Carl Vilhelm Ludwig Charlier (1862-1934)

The Star People (1921)
Gaylord Johnson

Terrestrial and Celestial Globes Volume 1: Their History and Construction Including a Consideration of their Value as Aids in the Study of Geography and Astronomy (1921)
Edward Luther Stevenson (1858-1944)

Terrestrial and Celestial Globes Volume 2: Their History and Construction Including a Consideration of their Value as Aids in the Study of Geography and Astronomy (1921)
Edward Luther Stevenson (1858-1944)

Astronomy for Young Folks (1922)
Isabel Martin Lewis (1881-1966)

Astronomy: The Science of the Heavenly Bodies (1922)
David Peck Todd (1855-1939)

The New Heavens (1922)
George Ellery Hale (1868-1938)

Watchers of the Sky (1922)
Alfred Noyes (1880-1958)

Biography of Percival Lowell (1935)
Abbott Lawrence Lowell (1856-1943)

Like Sun, Like Moon

The Earth orbits the Sun once every 365.256363 (mean solar) days relative to the distant stars.  The Earth’s orbital speed ranges from 18.2 miles per second at aphelion, around July 4th, to 18.8 miles per second at perihelion, around January 3rd.  In units we’re perhaps more familiar with, that’s 65,518 mph at aphelion and 67,741 mph at perihelion. That’s a difference of 2,223 miles per hour!

As we are on a spinning globe, the direction towards which the Earth is orbiting is different at different times of the day.  When the Sun crosses the celestial meridian, due south, at its highest point in the sky around noon (1:00 p.m. daylight time), the Earth is orbiting towards your right (west) as you are facing south. Since the Earth is orbiting towards the west, the Sun appears to move towards the east, relative to the background stars—if we could see them during the day.  Since there are 360° in a circle and the Earth orbits the Sun in 365.256363 days (therefore the Sun appears to go around the Earth once every 365.256363 days relative to the background stars), the Sun’s average angular velocity eastward relative to the background stars is 360°/365.256363 days = 0.9856° per day.

The constellations through which the Sun moves are called the zodiacal constellations, and historically the zodiac contained 12 constellations, the same number as the number of months in a year.  But Belgian astronomer Eugène Delporte (1882-1955) drew up the 88 constellation boundaries we use today, approved by the IAU in 1930, so now the Sun spends a few days each year in the non-zodiacal constellation Ophiuchus, the Serpent Bearer. Furthermore, because the Earth’s axis is precessing, the calendar dates during which the Sun is in a particular zodiacal constellation is gradually getting later.

Astrologically, each zodiacal constellation has a width of 30° (360° / 12 constellations = 30° per constellation).  But, of course, the constellations are different sizes and shapes, so astronomically the number of days the Sun spends in each constellation varies. Here is the situation at present.

Constellation
Description
Sun Travel Dates
Capricornus
Sea Goat
Jan 19 through Feb 16
Aquarius
Water Bearer
Feb 16 through Mar 12
Pisces
The Fish
Mar 12 through Apr 18
Aries
The Ram
Apr 18 through May 14
Taurus
The Bull
May 14 through Jun 21
Gemini
The Twins
Jun 21 through Jul 20
Cancer
The Crab
Jul 20 through Aug 10
Leo
The Lion
Aug 10 through Sep 16
Virgo
The Virgin
Sep 16 through Oct 31
Libra
The Scales
Oct 31 through Nov 23
Scorpius
The Scorpion
Nov 23 through Nov 29
Ophiuchus
Serpent Bearer
Nov 29 through Dec 18
Sagittarius
The Archer
Dec 18 through Jan 19

 

The apparent path the Sun takes across the sky relative to the background stars through these 13 constellations is called the ecliptic.  A little contemplation, aided perhaps by a drawing, will convince you that the ecliptic is also the plane of the Earth’s orbit around the Sun.  The Moon never strays very far from the ecliptic in our sky, since its orbital plane around the Earth is inclined at a modest angle of 5.16° relative to the Earth’s orbital plane around the Sun.  But, relative to the Earth’s equatorial plane, the inclination of the Moon’s orbit varies between 18.28° and 28.60° over 18.6 years as the line of intersection between the Moon’s orbital plane and the ecliptic plane precesses westward along the ecliptic due to the gravitational tug of war the Earth and the Sun exert on the Moon as it moves through space.  This steep inclination to the equatorial plane is very unusual for such a large moon.  In fact, all four satellites in our solar system that are larger than our Moon (Ganymede, Titan, Callisto, and Io) and the one that is slightly smaller (Europa) all orbit in a plane that is inclined less than 1/2° from the equatorial plane of their host planet (Jupiter and Saturn).

Since the Moon is never farther than 5.16° from the ecliptic, its apparent motion through our sky as it orbits the Earth mimics that of the Sun, only the Moon’s angular speed is over 13 times faster, completing its circuit of the sky every 27.321662 days, relative to the distant stars.  Thus the Moon moves a little over 13° eastward every day, or about 1/2° per hour.  Since the angular diameter of the Moon is also about 1/2°, we can easily remember that the Moon moves its own diameter eastward relative to the stars every hour.  Of course, superimposed on this motion is the 27-times-faster-yet motion of the Moon and stars westward as the Earth rotates towards the east.

Now, take a look at the following table and see how the Moon’s motion mimics that of the Sun throughout the month, and throughout the year.

 
——— Moon’s Phase and Path ———
Date
Sun’s Path
New
FQ
Full
LQ
Mar 20
EQ
EQ
High
EQ
Low
Jun 21
High
High
EQ
Low
EQ
Sep 22
EQ
EQ
Low
EQ
High
Dec 21
Low
Low
EQ
High
EQ

 

New = New Moon
near the Sun
FQ = First Quarter
90° east of the Sun
Full = Full Moon
180°, opposite the Sun
LQ = Last Quarter
90° west of the Sun

 

EQ
= crosses the celestial equator heading north
High
= rides high (north) across the sky
EQ
= crosses the celestial equator heading south
Low
= rides low (south) across the sky

 

So, if you aren’t already doing so, take note of how the Moon moves across the sky at different phases and times of the year.  For example, notice how the full moon (nearest the summer solstice) on June 27/28 rides low in the south across the sky.  You’ll note the entry for the “Jun 21” row and “Full” column is “Low”.  And, the Sun entry for that date is “High”.  See, it works!

Observation, Theory, and Reality

We continue our series of excerpts (and discussion) from the outstanding survey paper by George F. R. Ellis, Issues in the Philosophy of Cosmology.

8.3 Limits of Representation and Knowledge of Reality
It follows…that there are limits to what the scientific method can achieve in explanatory terms.  We need to respect these limits and acknowledge clearly when arguments and conclusions are based on some philosophical stance rather than purely on testable scientific argument.  If we acknowledge this and make that stance explicit, then the bases for different viewpoints are clear and alternatives can be argued about rationally.

We human beings want so badly to be able to explain our existence and existence itself that we tend to “fill in the blanks” and treat speculation (no matter how well reasoned) as if it were something akin to fact.  This is true for both science and religion.  A more reasonable approach, it seems to me, is to reject absolute certainty—especially where physical evidence is sparse or nonexistent—while always striving to deepen our understanding.  That is the scientist’s stock-in-trade—or should be.  Each of us needs to become more aware of the limitations of our understanding!

Thesis F6: Reality is not fully reflected in either observations or theoretical models.
Problems arise from confusion of epistemology (the theory of knowledge) with ontology (the nature of existence): existence is not always manifest clearly in the available evidence.  The theories and models of reality we use as our basis for understanding are necessarily partial and incomplete reflections of the true nature of reality, helpful in many ways but also inevitably misleading in others.  They should not be confused with reality itself!

We humans create our own “realities”, but under the very best of circumstances (science, for example), our “reality” is only an imperfect model of what actually exists.

The confusion of epistemology with ontology occurs all the time, underlying for example the errors of both logical positivism and extreme relativism.  In particular, it is erroneous to assume that lack of evidence for the existence of some entity is proof of its non-existence.  In cosmology it is clear for example that regions may exist from which we can obtain no evidence (because of the existence of horizons); so we can sometimes reasonably deduce the existence of unseen matter or regions from a sound extrapolation of available evidence (no one believes matter ends at or just beyond the visual horizon).  However one must be cautious about the other extreme, assuming existence can always be assumed because some theory says so, regardless of whether there is any evidence of existence or not.  This happens in present day cosmology, for example in presentations of the case for multiverses, even though the underlying physics has not been experimentally confirmed.  It may be suggested that arguments ignoring the need for experimental/observational verification of theories ultimately arise because these theories are being confused with reality, or at least are being taken as completely reliable total representations of reality.

Absence of evidence is not evidence of absence.  But, without evidence, all we have is conjecture, no matter how well informed.  As Carl Sagan once said, “Extraordinary claims require extraordinary evidence.”

No model (literary, intuitive, or scientific) can give a perfect reflection of reality.  Such models are always selective in what they represent and partial in the completeness with which they do so.  The only model that would reflect reality fully is a perfect fully detailed replica of reality itself! This understanding of the limits of models and theories does not diminish the utility of these models; rather it helps us use them in the proper way.  This is particularly relevant when we consider how laws of nature may relate to the origins of the universe itself, and to the existence and nature of life in the expanding universe.  The tendency to rely completely on our theories, even when untested, seems sometimes to arise because we believe they are the same as reality—when at most they are descriptions of reality.

Ellis makes a pretty good case here against dogma.  Though he does not specifically mention religion (and why should he, as the subject at hand is cosmology), I do think these ideas apply to religion as well.

Always a journey, never a destination.

References
Ellis, G. F. R. 2006, Issues in the Philosophy of Cosmology, Philosophy of Physics (Handbook of the Philosophy of Science), Ed. J. Butterfield and J. Earman (Elsevier, 2006), 1183-1285.
[http://arxiv.org/abs/astro-ph/0602280]

Bike Ride to Ridgeway (and back)

Ridgeway, Wisconsin is a special place.  A point right on the central meridian of the Central Time zone and the 43rd parallel (90° W longitude and 43° N latitude) is within the city limits of Ridgeway, and you can almost get there from here.

The point 43° N, 90° W

You can easily bicycle to this location by taking the Military Ridge State Trail into the west side of Ridgeway and turning north onto Ternes Ct.  I wonder if there’s a marker along Ternes Ct. at its closest point to 43° N, 90° W. If not, we need to put one there.

Getting to the point 43° N, 90° W

But wait!  Right where Ternes Ct. intersects Bier St. and becomes a gravel road, there’s a sign that says “Game Farm, No Trespassing”.  Foiled!

You know, we should have regular bike rides from Dodgeville to Ridgeway and back along the Military Ridge State Trail.  Anyone interested?  The distance from the Wisconsin DNR parking lot in Dodgeville to Badger Mart right next to the trail in Ridgeway is 9.2 miles, so it would be an 18.4 mile round trip along pretty flat terrain.  Badger Mart in Ridgeway is a convenient place to stop for a snack and a beverage before heading back to Dodgeville, and they are open from 5:00 a.m. until 9:00 p.m. every day of the week.

Would love to see this trail receive an asphalt surface someday, but the existing screened limestone surface isn’t bad.

Please post a comment here or email me if you’re interested in making this ride with me from Dodgeville to Ridgeway and back!

Meteor Shower “Clumpiness”

Have you ever noticed while watching a major meteor shower like the Geminids, Perseids, or the Leonids (esp. 1997-2002) that meteors come in clumps?  Often, you’ll see a bunch of meteors over a period of one to five minutes, followed by several (sometimes many) minutes with nothing.  In other words, if a rate of 60 meteors per hour is predicted, that does not mean you will see a meteor each minute!  Not even close.  This indicates that the particles in a meteor stream are somewhat bunched together rather than evenly distributed in space.

I can’t tell you how often someone has told me that they went out to watch meteor shower x, y, or z and didn’t see a thing.  Invariably, when I ask “how long did you watch?” they say something like 5, 10, or 15 minutes.  That’s not long enough!  If you’re serious about seeing some impressive meteor activity you really need to be out for two hours minimum, at a time when the meteor shower radiant is above the horizon.  Look generally toward the radiant direction—unless the Moon is in your field of view, in which case you will want to look in a direction opposite the Moon.  You also need to be reasonably well dark-adapted, and that means—ideally—no terrestrial lights should be in your field of view that are brighter than the brightest stars.

Turn Down the Lights, Turn Up the Stars

We are presently witnessing a rapid transformation of our outdoor nighttime environment as many older lighting sources such as high pressure sodium, metal halide, and fluorescent are being replaced with solid state lighting, specifically light emitting diodes (LEDs).  Many of the lighting decisions being made today with little or no citizen input will have consequences that impact our nighttime environment for decades.

Rather than continuing to subscribe to the “more is better, dusk-to-dawn” approach to outdoor lighting, we need to utilize this new technology in creative and innovative ways (many already available) to improve our nighttime built environment while minimizing lighting’s deleterious effects on the natural world.  Three paradigm shifts are needed.

Paradigm Shift #1
Less light will usually work just fine (a little light goes a long way)

Paradigm Shift #2
Dusk-to-dawn lighting → Lighting on Demand

Paradigm Shift #3
Full intensity lighting → Multi-Intensity Lighting (dimmable)

When choosing the amount of light you need, one should always consider the task or tasks needing to be performed.  For example, the amount of light needed to identify a rural intersection is much less than is needed to play a baseball game at night.  In both cases, though, the light needs to be restricted to only the area needing to be illuminated: the intersection or the playing field.

Another example.  When my wife and I bought a house in Dodgeville, Wisconsin back in 2005, our front porch had a 100-watt frosted incandescent light bulb to light the porch that we could turn on whenever we had company in the evening.  Thinking it too bright, we replaced the 100-watt bulb with a 60-watt bulb, then tried a 40-watt bulb, and finally a 25-watt bulb.  The 25-watt bulb adequately illuminated the porch and the stairs leading up to the porch, so in it stayed.

Then there is the issue of dusk-to-dawn lighting.  Many years ago, we switched outdoor lighting on or off as needed, but technological advancements later allowed us to have a light come on at dusk and stay on all night until dawn.  Now, think of all those lights burning when no one is there to use them.  If security is a concern, there is even newer technology that will do a far more effective job of detecting intruders than simply leaving a light on all night long.  In fact, a dusk-to-dawn light is not needed at all as part of an effective security system.  So, why not use 21st-century technology to have outdoor lights automatically turn on when needed and turn off when not needed?  Some LED light bulbs even come now with integrated occupancy sensors.  Lighting on demand could and should be replacing most dusk-to-dawn lighting within the next few years.

What about some roadway and parking lot lighting that must remain on all night long?  Those lights could be at full brightness during times of high traffic such as during the evening hours, but dimmed to 50% when traffic is lower, such as after midnight.  Once again, 21st-century technology makes this easy to do.

LED lighting lends itself very well to frequent on-off switching and dimming, but much of what is currently being installed is too blue.  As you can see in the table below, typical LED light sources have a substantial “spike” at the blue end of the visible light spectrum as compared with other white light sources.

Not only does blue light scatter more in the atmosphere and within our eyes, but many people perceive bluish-white light as colder, more clinical, than the warmer white light where this blue spike is absent, as shown below.  The blue spike in LED lighting can be removed either by using filtering, or by using a different phosphor that gives a warmer white spectrum.  Strongly preferred for both indoor and outdoor lighting are LED light sources with a correlated color temperature (CCT) of 2700K or 3000K.  2700K is the standard for indoor lighting, and yet 4000K is most often used for outdoor lighting.  Why?  Let’s move the standard for outdoor lighting to 2700K or 3000K.

By properly shielding lights so they only shine downwards, by using lights that are no brighter (or bluer) than they need to be, and by turning lights off when they are not needed—or dimming them during times of lower activity—we all will be helping to improve both our natural and celestial environment.

Turn Down the Lights, Turn Up the Stars *

* Suzy Munday, May 11, 2018

Additional Thoughts

In thinking about 21st-century lighting, one’s thoughts naturally towards 21st-century power generation.  We do not think often enough about the many advantages of a more decentralized power grid, where nearly everyone is generating some power with solar panels and small-scale wind turbines, as well as other local sources of energy such as geothermal.   As we once again consider building nuclear power plants (which will still be quite vulnerable to terrorism) and continue to build expensive fossil fuelish power plants and ugly high-voltage transmission lines, why not a paradigm shift towards decentralized energy production instead?

Lovely Coma Berenices

One of the special joys of getting out under a dark rural sky this time of year is seeing the gossamer beauty of the surprisingly expansive star cluster called Melotte 111, also known as the Coma star clusterMel 111 makes up a large part of the constellation Coma Berenices, “Berenice’s Hair”.  This constellation, which entertains the North Galactic Pole as well as a gaggle of galaxies, can be found about midway between Denebola (some call the Coma star cluster the end of the “tail” of Leo the Lion) and Arcturus, as well as midway between Spica and the Big Dipper.  Coma Berenices is transiting the meridian this week as evening twilight ends.  At a distance of just 284 light years, the Coma star cluster is the third nearest star cluster to us, surpassed only by the open cluster remnant Collinder 285—the Ursa Major association (80 ly)—and the Hyades (153 ly).

One Good Shirt Deserves Another

Who hasn’t tried to replace an article of clothing when it finally wears out, only to find that it is no longer available?  When I find something I like, I like to stick with it—or at least something quite similar.  Increasingly, I am having a harder and harder time finding clothing I like.  Is it my age?

Take, for example, long sleeve shirts.  I like button-down dress casual shirts, but if you’re looking for a pattern shirt that doesn’t include blue, good luck.  Look at the shirt below.  It goes well with tan or brown pants, but I can’t find anything like it anywhere!  For such a basic style, this really surprises me.

Here’s a close-up showing the pattern:

So, the moral of the story is if you find an article of clothing you like, purchase another two of them right away, because there’s no guarantee it will be available (or of the same quality) in a couple of years when you’ll be wanting to replace it with something comparable.

Unless, of course, it is blue.